Characterization of the extensive heterogeneity of KIT/PDGFRA mutations in patients with fourth-line advanced gastrointestinal stromal tumor: Genomic analysis of the phase 3 INVICTUS study

Sebastian Bauer¹, Patrick Schöffski², Michael Heinrich³, Suzanne George⁴, John Zalcberg⁵, Hans Gelderblom⁶, Cesar Serrano Garcia⁷, Robin L. Jones⁸, Steven Attia⁹, Gina D’Amato¹⁰, Ping Chi¹¹, Peter Reichardt¹², Julie Meade¹³, Vienna L. Reichert¹³, Ying Su¹³, Rodrigo Ruiz-Soto¹³, Jean-Yves Blay¹⁴, Margaret von Mehren¹⁵

¹Sarcoma Center, West German Cancer Center, Essen, Germany; ²General Medical Oncology, University Hospitals Leuven, Leuven, Belgium; ³Hematology/Medical Oncology, OHSU Knight Cancer Institute, Portland, OR, United States; ⁴Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; ⁵School of Public Health, Faculty of Medicine, Monash University, Melbourne, VIC, Australia; ⁶Medical Oncology, Leiden University Medical Center, Leiden, Netherlands; ⁷Medical Oncology, Vall d’Hebron Institute of Oncology, Barcelona, Spain; ⁸Sarcoma Unit, Royal Marsden and Institute of Cancer Research, London, United Kingdom; ⁹Oncology, Mayo Clinic, Jacksonville, FL, United States; ¹⁰Medical Oncology, Sylvester Comprehensive Cancer Center/University of Miami, Miami, FL, United States; ¹¹Human Oncology and Pathogenesis Program & Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; ¹²Oncology and Palliative Care, Sarcoma Center, Helios Klinikum Berlin-Buch, Berlin, Germany; ¹³Deciphera Pharmaceuticals, LLC, Waltham, MA, United States; ¹⁴Medecine, Centre Leon Berard, Lyon, France; ¹⁵Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.

CTOS Annual Meeting, Nov 18–21, 2020
Disclosure information

Dr. Sebastian Bauer

• Received honoraria from Bayer, Eli Lilly, Novartis, Pfizer, and PharmaMar

• Serves in an advisory/consultancy role for ADC Therapeutics, Bayer, Blueprint Medicines, Daiichi Sankyo, Deciphera, Eli Lilly, Exelixis, Janssen-Cilag, Nanobiotix, Novartis, PharmaMar, Plexxikon, and Roche

• Receives research funding from Novartis

• Serves as a member of the External Advisory Board of the Federal Ministry of Health for “Off-label use in oncology”
Introduction

- KIT mutations in exon 11 and exon 9 are early oncogenic events in gastrointestinal stromal tumors (GIST), and clonal evolution of additional mutations within the kinase domains (exons 13, 14, 17, and 18; Figure) represent the major mechanism of resistance to KIT tyrosine kinase inhibitors (TKI)\(^1\)^\(^-\)^\(^4\)

- In May 2020, the FDA approved ripretinib for the treatment of adult patients with advanced GIST who have received prior treatment with ≥3 kinase inhibitors, including imatinib

- Ripretinib is a switch-control TKI designed to inhibit mutant KIT and PDGFRA kinases\(^5\)

- Baseline tumor and plasma samples were collected to investigate the genomic heterogeneity of resistance in the well-defined patient cohort (≥fourth-line) of the INVICTUS trial\(^5\)

Introduction/Methods

Tissue biopsy

- Archival tumor tissue is not always available and can be time consuming to retrieve
- Invasive procedure is required to obtain biopsy
- Biopsy with low tumor content cannot be used for genotyping

Liquid biopsy

- Noninvasive, minimal burden for patients

Accessibility of testing material

- Archival tumor tissue is not always available and can be time consuming to retrieve
- Invasive procedure is required to obtain biopsy
- Biopsy with low tumor content cannot be used for genotyping

Data quality

- High sensitivity and specificity
- High sensitivity, but false negative rate is high due to low shedding from the tumor
- Can be challenging to use to identify emerging resistance mutations due to generally very low mutant allele frequency (<1%)
Primary mutation subgroups by baseline tumor biopsy

- KIT exon 11 (n = 75)
- KIT/PDGFRA WT (n = 10)
- Not available/not done (n = 17)
- KIT exon 9 (n = 20)
- PDGFRA exon 18 (n = 3)
- Other (n = 4)

129 patients were enrolled in the INVICTUS study

- Includes patients that failed sequencing due to low tumor content and a patient with no specimen.
- Includes 1 patient with a KIT exon 13 only mutation, 2 patients with KIT exon 17 only mutations, and 1 patient with KIT exon 13+17 mutations. WT, wild type.
Secondary KIT mutations detected in tumor biopsy

Primary KIT exon 11 (N = 75)
- Secondary mutation in 1 exon (n = 47) 62.7%
- Secondary mutations in 2 exons (n = 7) 9.3%
- Secondary mutations in 3 exons (n = 2) 2.7%
- Primary mutation only (n = 19) 25.3%

Primary KIT exon 9 (N = 20)
- Secondary mutation in 1 exon (n = 8) 40.0%
- Primary mutation only (n = 12) 60.0%
KIT mutations detected outside of exons 9/11 in tumor biopsy

- Mutations were more diverse in exons 17/18 (activation loop) compared with exons 13/14 (ATP binding pocket)
- **Fifteen** different mutations were found in exons 17/18
- **Five** different mutations were found in exons 13/14

Open circle indicates the protein change that occurred; closed circle indicates an in-frame deletion.
Primary mutation subgroups by baseline liquid biopsy

129 patients were enrolled in the INVICTUS study

*KIT exon 9 and 11 mutations were both detected in 1 patient and were counted in both groups.

*Includes patients that failed sequencing due to low tumor content and patients with no specimen.

*Includes 3 patients with exon 13 only mutations, 1 patient with an exon 17 only mutation, 1 patient with exon 13+17 mutations, and 1 patient with exon 13+14+17 mutations.

Secondary KIT mutations detected in liquid biopsy

Primary KIT exon 11 (N = 66)
- Secondary mutations in 3 exons (n = 3)
- Secondary mutations in 2 exons (n = 13)
- Secondary mutation in 1 exon (n = 37)
- Primary mutation only (n = 12)

Primary KIT exon 9 (N = 19)
- Secondary mutations in 3 exons (n = 1)
- Secondary mutations in 2 exons (n = 3)
- Secondary mutations in 3 exons (n = 3)
- Primary mutation only (n = 9)

One patient had both KIT exon 9 and 11 mutations.
KIT mutations detected outside of exons 9/11 in liquid biopsy

- More mutations were detected via liquid biopsy compared with tumor biopsy
- **Twenty-six** different mutations were found in exons 17/18
- **Twelve** different mutations were found in exons 13/14

Open circle indicates the protein change that occurred; closed circle indicates an in-frame deletion. There were 3 patients with exon 13 only mutations, 1 patient with an exon 17 only mutation, 1 patient an exon 13+17 mutation, and 1 patient with an exon 13+14+17 mutation.
Spectrum of KIT/PDGFRA mutations detected in tumor and liquid biopsy

- Heat map is generated by KIT exons/PDGFRA rather than by specific mutations in each exon
- Three patients were identified as having PDGFRA non-D824V exon 18 mutations

Ripretinib (n = 85)

Placebo (n = 44)

Green: detected in both; red: detected in tumor only; blue: detected in liquid only
Conclusions

• This is the first and largest baseline genomic analysis by tumor and liquid biopsy in fourth-line patients with GIST that failed prior treatment with at least imatinib, sunitinib, and regorafenib

• The combination of tumor and liquid biopsies increased the detection rate of secondary mutations

• In patients with ≥fourth-line GIST from the INVICTUS study, we observed a complex and heterogeneous mutational landscape

• The heterogeneity of these mutations highlight the need for therapies that are effective against a broad spectrum of mutations
Acknowledgments

• We would like to thank the patients, their families and caregivers, the investigators, and the investigational site staff of the INVICTUS study

• The INVICTUS study was sponsored by Deciphera Pharmaceuticals, LLC, Waltham, MA, USA

• Writing and editorial support was provided by Lauren Hanlon, PhD, of AlphaBioCom, LLC, King of Prussia, PA, USA, and was funded by Deciphera Pharmaceuticals, LLC