Pharmacokinetic-driven Phase I study of DCC-2618, a pan-KIT and PDGFRα inhibitor, in patients with Gastrointestinal Stromal Tumor (GIST) and other solid tumors

Filip Janku, Aliboum Ryan Abdul Rasul, Michael B. Gordon, David Brooks, Daniel Flynn, Michael Kaufmann, James Pelnar, Bryan D. Smith, Nicole Romanish, John Frederick De Groot, Guo Chen, Julia Jennings, Samer Salameh, Deborah Westwood, Eric Gerstenberger, Oliver Rosen, Suzanne George

1The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX, USA; 2Princess Margaret Cancer Centre, Cancer Clinical Research Unit, Toronto, Canada; 3Princess Oncology Hematology, Phase 1 Unit, Scottsdale, AZ, USA; 4Deciphera Pharmaceuticals, Clinical Research & Development, Wayne, MA, USA; 5Bristol-Myers Squibb, Research, Lawrence, KS, USA; 6The University of Texas MD Anderson Cancer Center, Department of Sarcoma Medical Oncology, Houston, TX, USA; 7The University of Texas MD Anderson Cancer Center, Department of Surgery-Oncology, Houston, TX, USA; 8Gastro-CanFar Cancer Institute, Center for Sarcoma and Bone Oncology, Boston, MA, USA; 9Yacktfield, Southborough, MA, USA

Acknowledgment: We would like to thank the patients, their families, and the site staff of the DCC-2618-01-001 trial.

BACKGROUND

- DCC-2618 is a pan-KIT and PDGFRα kinase selectivity control inhibitor resistant to disease and drug resistance mutations and potency independent of ATP concentration.
- DCC-2618 was designed to potentially inhibit the broad range of mutations in KIT & PDGFRα kinases.
- Gastrointestinal stromal tumor (GIST) is an important disease to achieve proof-of-concept due to the multiplicity and heterogeneity of resistance mutations within KIT.
- In non-clinical analyses, DCC-2618 showed activity against all available resistant variants covering all secondary ATP-binding site (13 of 14) and activation loop (17 of 18) mutations that have been tested.
- Plasma cfDNA assessment was included to describe and monitor the genomic profile of patients and the impact of treatment with DCC-2618.
- In GIST patients, Next Generation Sequencing (NGS) was applied to cfDNA at baseline and throughout the study to assess whether DCC-2618 is active across a broad range of mutations i.e. a pan KIT inhibitor.

METHODS

Study Design (NCT03571836)

- Pharmacology-guided 3+3 escalation Phase I study of oral DCC-2618 administered in 26-dose cycles
- Study Objectives:
 - Primary Safety: tolerability, maximum tolerated dose (MTD), dose-limiting toxicities (DLT)
 - Secondary Pharmacodynamic profile, antitumor efficacy
- Exploratory: in plasma cell-free DNA (cfDNA), mutations were detected by next generation sequencing and quantified by Quidel 300 or v2 or v3.10 and described as mutation allele frequency (MAF) Patients (Major Eligibility Criteria)
- Patients with advanced refractory cancers and molecular rationale for activity
- Adequate organ function
- Prior KIT/PDGFRα inhibitors were allowed

RESULTS

<table>
<thead>
<tr>
<th>Table 1: DCC-2618 Dose Levels & Patient Characteristics (N=12)</th>
<th>Table 2: Treatment-emergent Adverse Events (TEAEs) (N=48)</th>
<th>Table 3: Duration of Treatment on DCC-2618 in Heavily Pre-Treated KIT and PDGFRα GIST Patients (N=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose (mg)</td>
<td>Range of Orals</td>
<td>No of pts</td>
</tr>
<tr>
<td>30 mg</td>
<td>30 mg</td>
<td>3</td>
</tr>
<tr>
<td>30 mg</td>
<td>30 mg</td>
<td>2</td>
</tr>
<tr>
<td>30 mg</td>
<td>30 mg</td>
<td>1</td>
</tr>
<tr>
<td>30 mg</td>
<td>30 mg</td>
<td>1</td>
</tr>
<tr>
<td>100 mg</td>
<td>100 mg</td>
<td>2</td>
</tr>
<tr>
<td>100 mg</td>
<td>100 mg</td>
<td>2</td>
</tr>
<tr>
<td>150 mg</td>
<td>150 mg</td>
<td>2</td>
</tr>
</tbody>
</table>

Patients

- **Table 1**: Treatment-emergent Adverse Events (TEAEs) (N=48)
- **Table 2**: Duration of Treatment on DCC-2618 – All GIST Patients (N=38)
- **Table 3**: Duration of Disease Control in Heavily Pre-Treated KIT and PDGFRα GIST Patients (N=12)

CONCLUSIONS

- DCC-2618 is well tolerated up to 200 mg BD.
- No patient discontinued DCC-2618 due to toxicity.
- All DLTs were not clinically significant.
- DCC-2618 demonstrated encouraging disease control with objective responses and prolonged stable disease in heavily pre-treated GIST patients.
- Notable reductions in MAF of KIT mutations across all relevant exons in KIT suggests activity across a wide range of intrinsic resistance mutations is maintained.
- Several patients harbored multiple mutations (see patient numbers at each level).
- A durable partial response of 18 months in a GIST patient (94% tumor reduction to date) at 20 mg BD warrants further evaluation in this indication.

Figure 1: DCC-2618 Cycle 1 Plasma Pharmacokinetics Total Exposure Across QD and BID Dosing Cohorts (N=48)

- QT analyses showed a dose proportional increase in total exposure from 100 to 150 mg BD plasma concentrations were measured.
- QTcF change from baseline was not clinically significant.

Figure 2: Duration of Treatment on DCC-2618 – All GIST Patients (N=38)

- The DCR for KIT and PDGFRα GIST cohorts for daily dose equivalents of 150 mg to 6 months in 60% (in 21 patients), at 4 months in 56% (18/33 patients).

Figure 3: DCC-2618 Duration of Disease Control in Heavily Pre-Treated KIT and PDGFRα GIST Patients (N=12)

- Several patients harbored multiple mutations (see patient numbers at each level).
- Moderate doses of 30 to 50 μM DCC-2618 may have an impact on the tyrosine kinase domain, particularly in the ATP-binding domain.

Figure 4: Best Radiographic Response per RECIST in KIT and PDGFRα GIST Patients (N=27)

- Patients 5439, an active metabolite of DCC-2618, is active across a broad range of mutations i.e. a pan KIT inhibitor.
- Several patients harbored multiple mutations (see patient numbers at each level).

Figure 5: Use of cfDNA as Pharmacodynamic Biomarker in Support of Dose Selection

- Plasma cfDNA assessment was included to describe and monitor the genomic profile of patients and the impact of treatment with DCC-2618.
- In GIST patients, Next Generation Sequencing (NGS) was applied to cfDNA at baseline and throughout the study to assess whether DCC-2618 is active across a broad range of mutations i.e. a pan KIT inhibitor.

Figure 6: cDNA as Pharmacodynamic Biomarker in Support of Dose Selection

- Comparisons of TAEs with an incidence of ≥8% are shown.
- All grade and creatine phosphokinase elevations were not clinically significant.

Figure 7: Partial Responses per RANO in Patient with Glioblastoma Multiforme (GBM) after Cycle 18

- The DCR for KIT and PDGFRα GIST cohorts for daily dose equivalents of 150 mg to 6 months in 60% (in 21 patients), at 4 months in 56% (18/33 patients).

CONCLUSIONS

- DCC-2618 is well tolerated up to 200 mg BD.
- No patient discontinued DCC-2618 due to toxicity.
- All DLTs were not clinically significant.
- DCC-2618 demonstrated encouraging disease control with objective responses and prolonged stable disease in heavily pre-treated GIST patients.
- Notable reductions in MAF of KIT mutations across all relevant exons in KIT suggests activity across a wide range of intrinsic resistance mutations is maintained.
- Several patients harbored multiple mutations (see patient numbers at each level).
- A durable partial response of 18 months in a GIST patient (94% tumor reduction to date) at 20 mg BD warrants further evaluation in this indication.
- 150 mg QD is the recommended dose of DCC-2618 for the Phase 1 expansion stage, which includes the following cohorts:
 - Patients with GIST who have progressed on or are intolerant of imatinib.
 - Patients with advanced systemic mastocytosis.
 - Patients with other KIT and PDGFRα driven diseases e.g., glomerulonephritis.