# Population pharmacokinetics of ripretinib in patients with advanced malignancies

## Suzanne George<sup>1</sup>, Filip Janku<sup>2</sup>, Ping Chi<sup>3</sup>, Margaret von Mehren<sup>4</sup>, Neeta Somaiah<sup>5</sup>, Hans Gelderblom<sup>6</sup>, Robin L. Jones<sup>7</sup>, Martine Allard<sup>8</sup>, Adekemi Taylor<sup>8</sup>, Xiaoyan Li<sup>9</sup>, Julie Meade<sup>9</sup>, Vienna Reichert<sup>9</sup>, Rodrigo Ruiz-Soto<sup>9</sup>, Jing Wang<sup>9</sup>, Michael Heinrich<sup>10</sup>

<sup>1</sup>Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; <sup>2</sup>Investigational Cancer Center, New York, NY, USA; <sup>4</sup>Hematology/Oncology, Fox Chase Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; <sup>4</sup>Hematology/Oncology, Fox Chase Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; <sup>4</sup>Hematology/Oncology, Fox Chase Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; <sup>4</sup>Hematology/Oncology, Fox Chase Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; <sup>4</sup>Hematology/Oncology, Fox Chase Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; <sup>4</sup>Hematology/Oncology, Fox Chase Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; <sup>4</sup>Hematology/Oncology, Fox Chase Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; <sup>4</sup>Hematology/Oncology, Fox Chase Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer and Pathogenesis Program/Department of Medicine, Memorial Sloan Kettering Cancer and Pathogenesis Program/Department of Memorial Sloan Ketteri Center, Philadelphia, PA, USA; <sup>5</sup>Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Research, London, UK; <sup>8</sup>Certara, Princeton, NJ, USA; <sup>9</sup>Deciphera Pharmaceuticals, LLC, Waltham, MA, USA; <sup>10</sup>Hematology/Medical Oncology, OHSU Knight Cancer Institute, Portland, OR, USA

Observed Percentiles

Simulated Percentiles

Median (lines) 95% CI (areas)

(black lines)

· · 5%

- 50% - 95%

- 5%

- 50% - 95%

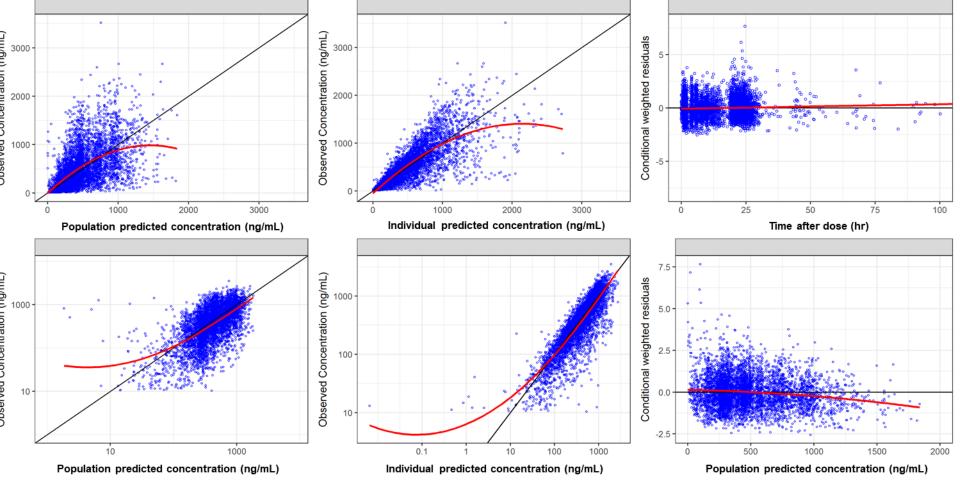
# INTRODUCTION

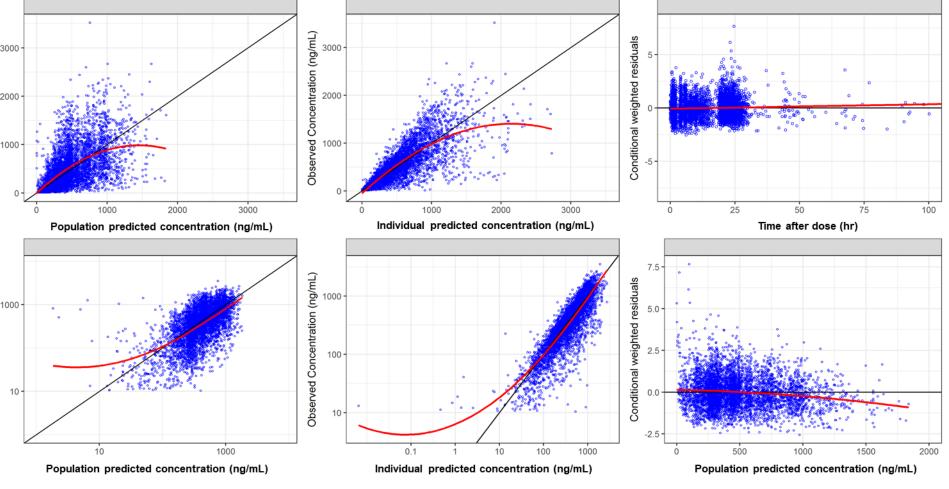
- Ripretinib is a kinase inhibitor indicated for the treatment of adult patients with advanced gastrointestinal stromal tumor (GIST) who have received prior treatment with 3 or more kinase inhibitors, including imatinib
- The dose of 150 mg once daily (QD) is approved in the US, Canada, Australia, and Hong Kong<sup>1–3</sup>
- DP-5439 is an active metabolite of ripretinib with in vitro activity and in vivo exposure similar to that of ripretinib<sup>4</sup>
- In a phase 1 study (NCT02571036), the maximum tolerated dose was not reached with doses up to 200 mg twice daily (BID). In the phase 1 and phase 3 (INVICTUS, NCT03353753) clinical studies, ripretinib dose escalation to 150 mg BID was offered to patients after radiologic progression of disease at 150 mg QD. This regimen has been well tolerated with a similar safety profile as seen at 150 mg QD<sup>5-7</sup>
- Steady-state pharmacokinetic (PK) exposures following ripretinib 150 mg BID were approximately 2-fold higher compared with that of ripretinib 150 mg QD
- In this analysis, we characterize the population PK (popPK) of ripretinib and identify covariates influencing ripretinib exposure

# **METHODS**

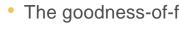
- The popPK models for ripretinib and DP-5439 were developed using 5284 and 5160 quantifiable concentrations, respectively, from 350 patients pooled from the phase 1 (NCT02571036) and INVICTUS studies (**Table 1**)
- The model was developed using the first-order conditional estimation with interaction method in NONMEM® (version 7.3; ICON, Hanover, MD, US) and evaluated based on standard goodness-of-fit metrics
- A covariate analysis was conducted to assess the sources of variability in ripretinib PK using a full model approach with backward elimination (significance level = 0.005)
- Evaluated covariates included age, body weight, sex, race, tumor type, prior gastrectomy (full, partial, or unknown type), and mild hepatic impairment and renal function (body surface area-normalized creatinine clearance)

### Table 1. Clinical studies included in the analysis

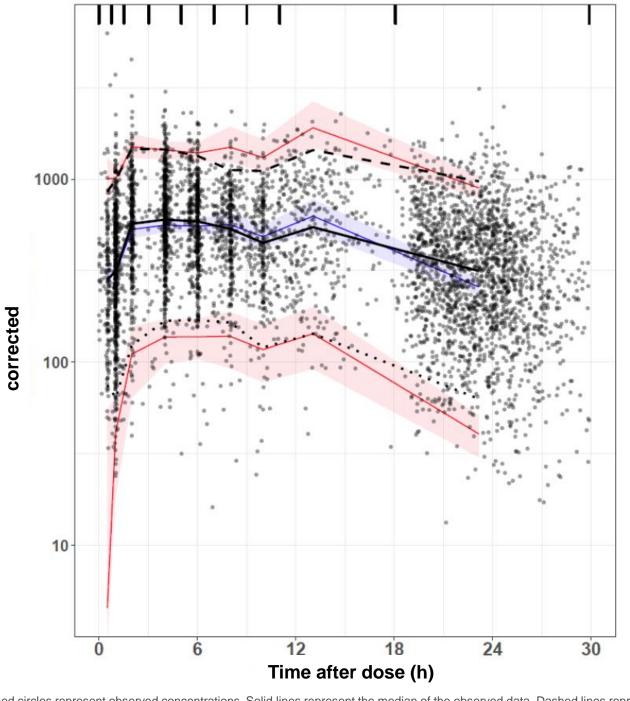

| Study No.                 | Study design, N <sup>a</sup>                                                                                                                                                                                                                                            | Drug dose<br>and regimen                                                                                                                                                                                                                                              | Plasma PK sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NCT02571036               | A multicenter,<br>phase 1, open-<br>label study of<br>ripretinib to assess<br>safety, tolerability,<br>efficacy, and PK in<br>patients with<br>advanced<br>malignancies<br><u>Escalation Phase</u><br>68 patients<br>enrolled<br><u>Expansion Phase</u><br>169 patients | 28-day cycles<br><u>Escalation Phase</u><br>20, 30, 50, 100,<br>150, and 200 mg<br>BID; 100, 150, and<br>250 mg QD<br>Intrapatient dose<br>escalation was<br>permitted<br><u>Expansion Phase</u><br>150 mg QD<br>Patients could be<br>dose escalated to<br>150 mg BID | Escalation Phase<br>Cycle 1, Days −7 (food effect), 1, 15: Predose;<br>0.5, 1, 2, 4, 6, 8, 10−12, and 24 h (Days −7 and 1<br>only) postdoseCycle 1, Days 8 and 22;<br>Day 1 of later cycles: predoseIntrapatient dose escalation (next visit after dose<br>escalation): predose; 1 and 6 h postdoseExpansion Phase<br>Cycle 1 Days 1 and 15: predose (Day 15 only); 1<br>and 6 h postdoseCycle 1 Day 8 and Day 1 of later cycles: predoseAdditional subset (both phases; N ≈ 12)<br>After steady-state attainment: predose; 24, 36,<br>48, 72, 96, 120, 144, and 168 h postdose |
| NCT03353753<br>(INVICTUS) | A phase 3,<br>randomized,<br>double-blind,<br>placebo-controlled<br>study; 129 patients<br>enrolled (85<br>randomized to<br>ripretinib and 44<br>randomized to<br>placebo)<br>N = 129                                                                                   | 150 mg QD or<br>matching placebo<br>(2:1)                                                                                                                                                                                                                             | Cycle 1 Day 1: predose and 6 h postdose<br>Cycle 1 Day 15: predose; 2 and 6 h postdose<br>Day 1 of Cycles 2, 3, and every other cycle<br>thereafter (Cycles 5, 7, etc); at intrapatient dose<br>escalation, disease progression, and EOT visit:<br>predose<br>Same PK sampling as above after crossover<br>from placebo to ripretinib                                                                                                                                                                                                                                           |


BID = twice daily; EOT = end of treatment; N = number of patients; PK = pharmacokinetics; QD = once daily.

# RESULTS


bioavailability and linear elimination

## Figure 1. Goodness-of-fit plots for the final ripretinib population PK model






Blue open circles represent individual data points. Black lines represent the line of unity for observation versus prediction plots and y = 0 for the conditional weighted residual plots Red lines represent LOESS smooth regression lines. LOESS = locally estimated scatterplot smoothing; PK, pharmacokinetic.



#### Figure 2. Prediction-corrected visual predictive checks for the final ripretinib population PK model



Closed circles represent observed concentrations. Solid lines represent the median of the observed data. Dashed lines represent the 5th and 95th percentiles of the observations. The blue shaded region represents the 95% CIs of the medians of the simulations. The pink shaded regions represent the 95% CIs of the 5th and 95th percentiles of the simulations CI = confidence interval; PK = pharmacokinetic

• The prediction-corrected visual predictive checks indicated a good predictive performance of the model (Figure 2)

### References

1) Qinlock. Prescribing information. Waltham, MA: Deciphera Pharmaceuticals, LLC; 2020. Last revised: 05/2020. Available at: https://qinlockhcp.com/Content/files/qinlock-prescribing-information.pdf; 2) Health Canada, DIN 02500833. https://pdf.hres.ca/dpd\_pm/00056679.PDF; 3) Australian Government Department of Health, ARTG 327899. https://www.ebs.tga.gov.au/ebs/picmi/picmirepository.nsf/pdf?OpenAgent&id=CP-2020-PI-02677-1; 4) Smith BD, et al. Cancer Cell 2019;35:738–51; 5) Janku F, et al. J Clin Oncol 2020;38:3294–303; 6) Janku F, et al. Ann Oncol 2020;31(Suppl 4):S974–5; 7) Blay JY, et al. Lancet Oncol 2020;21:923–34; 8) NCI. Protocol for Organ Dysfunction Studies. 2019. <u>https://ctep.cancer.gov/protocolDevelopment/docs/CTEP\_Organ\_Dysfunction\_Protocol\_Template.docx..</u> Accessed March 10, 2021.

Presented at the AACR Virtual Annual Meeting 2021, April 10–15

• Ripretinib oral PK was well described by a 2-compartment model with zero-order drug release at the absorption site followed by first-order absorption, with a modest, linear dose-dependent decrease in relative

• The PK of DP-5439 was described by a 1-compartment model with linear elimination

• The goodness-of-fit plots demonstrate that the model was generally able to describe the data well (Figure 1)

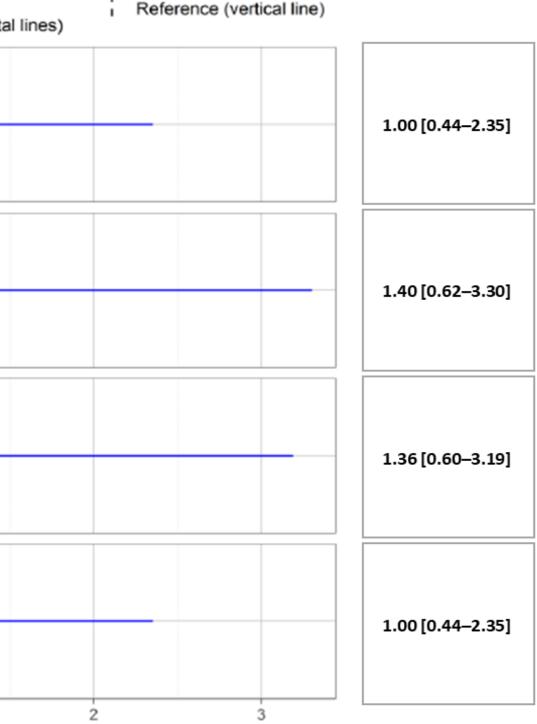
#### Table 2. Final population PK estimates for ripretinit

| Table 2. Final population PK estimates for high    |                | Fixed effects |          | BSV CV% |           |
|----------------------------------------------------|----------------|---------------|----------|---------|-----------|
| Parameter                                          | Estimate       | RSE%          | Estimate | RSE%    | Shrinkage |
| CL/F (L/h)                                         | 12.7           | 4.0%          | 53.6%    | 3.9%    | 7.0%      |
| Vc/F (L)                                           | 20.4           | 8.7%          | 58.2%    | 17.5%   | 57.1%     |
| Q/F (L/h)                                          | 7.30           | 3.0%          | 0 FIXED  | N/A     | N/A       |
| Vp/F (L)                                           | 675            | 7.2%          | 1465%    | 7.3%    | 26.4%     |
| Ka (1/h)                                           | 0.0832         | 2.7%          | 43.2 %   | 5.9%    | 22.3%     |
| D1 (h)                                             | 1.459          | 6.6%          | 71.4%    | 6.6%    | 38.2%     |
| Frel vs dose slope (1/mg)                          | -0.00293       | 8.8%          | N/A      | N/A     |           |
| D1 ~ high-fat meal fold-change                     | 3.47<br>FIXED  | 0 FIXED       | N/A      | N/A     |           |
| Frel ~ high-fat meal fold-change, <100 mg          | 1.131<br>FIXED | N/A           | N/A      | N/A     |           |
| Frel ~ high-fat meal fold-change, 100 mg or 150 mg | 1.356<br>FIXED | N/A           | N/A      | N/A     |           |
| Frel ~ high-fat meal fold-change, >150 mg          | 1.683<br>FIXED | N/A           | N/A      | N/A     |           |
| CL/F ~ female fractional change                    | -0.287         | 14.4%         |          |         |           |
| Ka ~ prior gastrectomy fractional change           | 0.230          | 40.3%         |          |         |           |
| Proportional residual error (CV%)                  | 41.0%          | 0.85%         |          |         |           |
| Additive residual error standard deviation (ng/mL) | 29.6           | 1.9%          |          |         |           |

BSV = between-subject variability; CL/F = apparent clearance; CV% = percent coefficient of variation; D1 = duration of zero-order release; Frel = relative bioavailability; Ka = first-order absorption rate constant; N/A = not applicable; PK = pharmacokinetic; Q/F = apparent inter-compartmental clearance; RSE = relative standard error; Vc/F = apparent central volume of distribution; Vp/F = apparent peripheral volume of distribution. • There were no clinically meaningful differences in the PK of ripretinib based on age, race, body weight, or tumor type. The covariate analysis did not identify these variables as covariates on ripretinib clearance and

volume of distribution (data not shown)

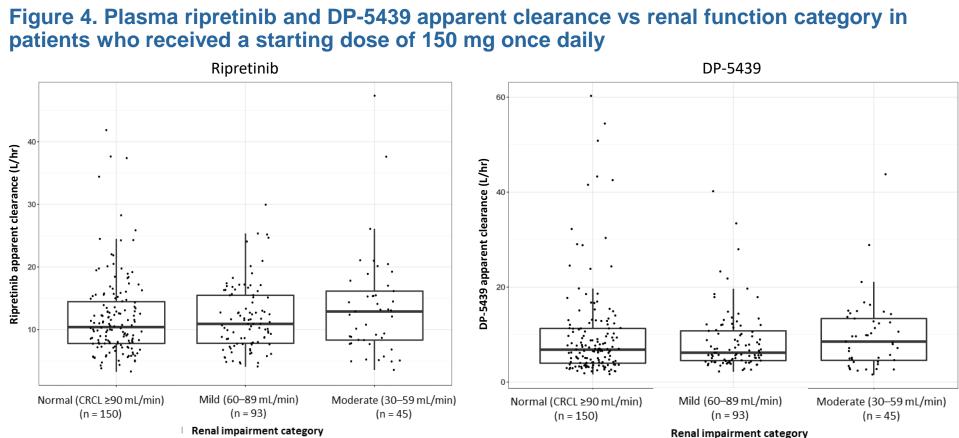
#### Figure 3. Forest plot of covariate effects on steady-state ripretinib AUC (ratios)

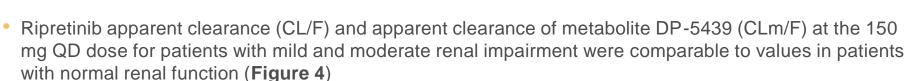

Median (points) 90% PI (horizontal lines) Reference Female High-fat meal Gastrectom

## Fold-change in steady-state ripretinib AUC relative to reference

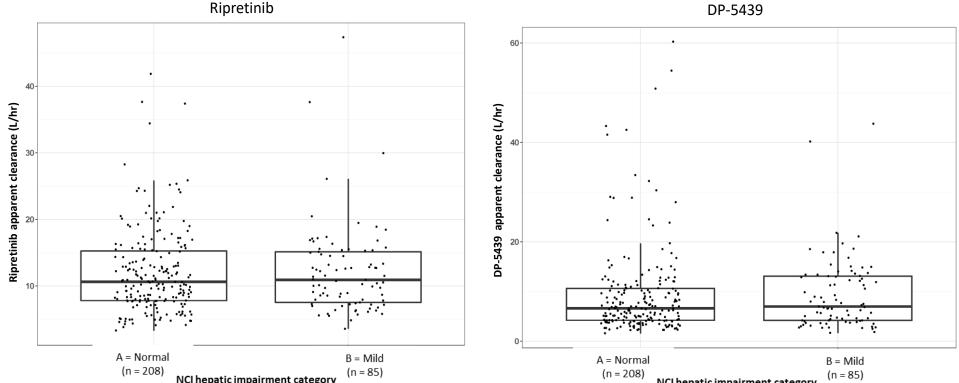
For all covariate scenarios, all other covariates were maintained at values for the reference patient (male patient without prior gastrectomy taking 150 mg QD ripretinib in the fasted state). The median simulated ripretinib AUC for the reference patient was 11.6 µg\*h/mL. Numbers in the right-hand panel represent median (90% PI). AUC = area under the plasma concentration-time curve; GASTREC = gastrectomy; PI = prediction interval; PRAND = prandial; QD = once daily; REF = reference

- compared to males (**Figure 3**)
- relative to the fasted state
- on the exposure of ripretinib


— A 28.7% decrease in apparent clearance was estimated in females relative to males




Ripretinib area under the plasma concentration-time curve (AUC) was predicted to be 40% higher in females


• A high-fat meal administered with 150 mg QD was predicted to result in a 36% increase in ripretinib AUC

Although there was a 23% increase in the first-order absorption rate, there was no effect of prior gastrectomy





## Figure 5. Plasma ripretinib and DP-5439 apparent clearance vs hepatic function category in patients who received a starting dose of 150 mg once daily



NCI = National Cancer Institute.

CRCL = creatinine clearance

- Ripretinib CL/F and DP-5439 CLm/F at the 150 mg QD dose for patients with mild hepatic impairment based on the National Cancer Institute hepatic dysfunction classification<sup>8</sup> were comparable to values observed in patients with normal hepatic function (**Figure 5**)
- DP-5439 was predicted to decline in parallel with ripretinib in the terminal phase, indicating the decline of DP-5439 plasma concentrations is formation-rate limited

# CONCLUSIONS

- Ripretinib oral PK was well described by a 2-compartment model and had a modest, linear dose-dependent decrease in relative bioavailability and linear elimination
- There were no clinically meaningful differences in the PK of ripretinib based on age, race, body weight, or tumor type
- No effect of prior gastrectomy on the exposure of ripretinib was observed
- Based on the safety profile of ripretinib observed in patients with advanced malignancies, dose escalation of ripretinib to 150 mg BID after progression on 150 mg QD showed a similar safety and tolerability profile.<sup>6</sup> Steady-state pharmacokinetic (PK) exposure following ripretinib 150 mg BID were approximately 2-fold higher compared with that of ripretinib 150 mg QD
- The magnitude of increased ripretinib exposures in females or with high-fat meals does not suggest a need for dose adjustment in those conditions
- No dose adjustment is recommended for patients with mild to moderate renal impairment or patients with mild hepatic impairment

#### Acknowledgments

We would like to thank the patients, their families and caregivers, the investigators, and the investigational site staff of the phase 1 and INVICTUS studies. The studies were sponsored by Deciphera Pharmaceuticals, LLC (Waltham, MA, USA). Writing and editorial support was provided by AlphaBioCom, LLC (King of Prussia, PA, USA), and was funded by Deciphera Pharmaceuticals, LLC.



ICI henatic impairment category