Mutational heterogeneity of imatinib resistance and efficacy of ripretinib vs sunitinib in patients with gastrointestinal stromal tumor: ctDNA analysis from INTRIGUE

<u>Sebastian Bauer</u>, Robin L Jones, Hans Gelderblom, Suzanne George, Patrick Schöffski, Margaret von Mehren, John R Zalcberg, Yoon-Koo Kang, Albiruni Abdul Razak, Jonathan Trent, Steven Attia, Axel Le Cesne, William Reichmann, Kam Sprott, Haroun Achour, Matthew L Sherman, Rodrigo Ruiz-Soto, Jean-Yves Blay, Michael C Heinrich

January Program

January 24, 2023

Background

- GIST is the most common sarcoma of the GI tract¹
- Most GIST cases have activating mutations in KIT (~80%) or PDGFRA (5%–10%)²
- Imatinib, a KIT/PDGFRA TKI, induces objective responses or stable disease in most cases of advanced GIST³
- Most imatinib-treated patients will experience tumor progression due to development of secondary resistance mutations in KIT or PDGFRA⁴⁻⁷
- The main mechanism of imatinib resistance is the emergence of heterogeneous KIT secondary mutations in the kinase domain (~90% of patients)⁸
 - ATP-binding pocket (exons 13/14)
 - Activation loop (exons 17/18)

¹⁾ Rubin S, et al. Lancet. 2007;369:1731–41. 2) NCCN Guidelines v2.2022. 3) Blanke CD, et al. J Clin Oncol. 2008;26:5352–59. 6) Kelly CM, et al. J Hematol Oncol. 2021;14:2–12. 7) Grunewald S, et al. Cancer Discov. 2021;11:108–25. 8) Schaefer I-M, et al. ASCO Ed Book. 2022;42:885–99. Figure created with biorender com

Background

- Ripretinib is a switch-control TKI approved for adult patients with advanced GIST who received prior treatment with 3 or more TKIs, including imatinib¹
- Sunitinib is approved for advanced GIST after disease progression or intolerance to imatinib²
- In the primary analysis from the INTRIGUE study in second-line GIST, ripretinib was not superior to sunitinib in terms of PFS in the KIT exon 11 ITT population or in the overall ITT population³
- Mutational ctDNA analysis can provide more insight into imatinib resistance mutations
 - KIT exon 17 mutations account for as many as 50% of the cases of acquired resistance to imatinib⁴
 - Ripretinib and sunitinib have highly differential activity against KIT exon 17 activation loop mutations^{5,6}

¹⁾ Deciphera Pharmaceuticals. Qinlock Prescribing Information. https://www.qinlockhcp.com/Content/files/ginlock-prescribing-information.pdf. Last Revised: December 2022. 2) Pfizer Laboratories. Sutent Prescribing Information. https://labeling.pfizer.com/ShowLabeling.aspx?id=607. Last Revised: August 2021. 3) Bauer S, et al. *J Clin Oncol*. 2022;40:3918–28. 4) Oppelt PJ, et al. *J Gastrointest Oncol*. 2017;8:466–73. 5) Bauer S, et al. *Clin Cancer Res*. 2021;27:6333–42. 6) Heinrich MC, et al. *J Clin Oncol*. 2008;26:5352–59. Cl. confidence interval; ctDNA, circulating tumor DNA; GIST, gastrointestinal stromal tumor; HR, hazard ratio; ITT, intent-to-treat; PFS, progression-free survival; TKI, tyrosine kinase inhibitor.

INTRIGUE trial design

INCLUSION CRITERIA

Patients ≥18 years old with a confirmed diagnosis of GIST who progressed on or had documented intolerance to imatinib

Patients were enrolled from 122 sites across North America, South America, Europe, Australia, and Asia

Stratified by

- Mutational status:
 - KIT exon 11
 - KIT exon 9
 - KIT/PDGFRA wild type
 - Other KIT/PDGFRA
- Intolerance to imatinib

INTRIGUE PHASE 3 CLINICAL STUDY

Data cutoff (except OS): September 1, 2021; OS data cutoff: September 1, 2022. ctDNA, circulating tumor DNA; GIST, gastrointestinal stromal tumor; IRR, independent radiologic review; mRECIST v1.1, modified Response Evaluation Criteria in Solid Tumors version 1.1; OS, overall survival; PDGFRA, platelet-derived growth factor receptor alpha; PFS, progression-free survival; QD, once daily.

ctDNA analysis and detection

KIT ATP-binding pocket

KIT exon 11 + 13/14 population (excludes KIT exon 9/17/18 mutations) N = 41

> Ripretinib, n = 21Sunitinib, n = 20

KIT activation loop

KIT exon 11 + 17/18 population (excludes KIT exon 9/13/14 mutations) N = 52

> Ripretinib, n = 27Sunitinib, n = 25

Heterogeneity of mutations in the KIT kinase domain

PFS by IRR in mutational subgroups by ctDNA analysis

Efficacy in *KIT* exon 11 + 13/14 population ATP-binding pocket

Efficacy in *KIT* exon 11 + 17/18 population Activation loop

Efficacy in *KIT* exon 11 + 17/18 population Activation loop

Data cutoff: September 1, 2021. Excludes *KIT* exons 9/13/14. No postbaseline disease assessment was available for 2 patients in the sunitinib arm and 1 patient in the ripretinib arm. Objective response rate was confirmed with follow-up imaging and determined using modified Response Evaluation Criteria in Solid Tumors version 1.1 criteria. The median (95% CI) duration of response for patients receiving ripretinib was 16.7 (9.7–not estimable) months. CI, confidence interval; NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease.

Outcomes by ctDNA analysis in *KIT* exon 11 + secondary resistance mutation subpopulations

	Activation loop (<i>KIT</i> exon 11 + 17/18) ^a		ATP-binding pocket (KIT exon 11 + 13/14) ^b		Activation loop/ATP-binding pocket co-mutants (KIT exon 11 + 13/14 + 17/18) ^c	
	Ripretinib n = 27	Sunitinib n = 25	Ripretinib n = 21	Sunitinib n = 20	Ripretinib n = 11	Sunitinib n = 11
mPFS, months	14.2	1.5	4.0	15.0	8.1	10.9
HR (95% CI)	0.22 (0.11, 0.44)		3.94 (1.71, 9.11)		1.07 (0.41, 2.84)	
ORR, %	44.4	0	9.5	15.0	27.3	9.1
mOS, months	Not estimable	17.5	24.5	Not estimable	14.7	20.3
HR (95% CI)	0.34 (0.15, 0.76)		1.75 (0.72, 4.24)		2.61 (0.95, 7.19)	

Follow-up anticancer therapies in *KIT* exon 11 + 17/18 population

Activation loop

	Ripretinib	Sunitinib	Total
Category, n (%)	n = 27	n = 25	N = 52
Patients with follow-up anticancer therapy	20 (74)	16 (64)	36 (69)
Sunitinib	18 (67)	1 (4.0)	19 (37)
Regorafenib	7 (26)	12 (48)	19 (37)
Ripretinib	0	10 (40)	10 (19)
Imatinib	1 (3.7)	1 (4.0)	2 (3.8)
Other	3 (11)	0	3 (5.8)

TEAEs ≥20% in the *KIT* exon 11 + 17/18 population Activation loop

	Ripretinib	Sunitinib	Total
Category, n (%)	n = 27	n = 24	N = 51
Any grade 3/4 drug-related TEAE	9 (33)	12 (50)	21 (41)
Any drug-related treatment-emergent SAE	1 (3.7)	3 (13)	4 (7.8)
All grades TEAEs, preferred term			
Alopecia	21 (78)	2 (8.3)	23 (45)
Constipation	14 (52)	8 (33)	22 (43)
Fatigue	13 (48)	9 (38)	22 (43)
Hypertension	9 (33)	12 (50)	21 (41)
PPES	10 (37)	10 (42)	20 (39)
Myalgia	12 (44)	3 (13)	15 (29)
Abdominal pain	7 (26)	8 (33)	15 (29)
Decreased appetite	7 (26)	8 (33)	15 (29)
Diarrhea	6 (22)	9 (38)	15 (29)
Nausea	7 (26)	7 (29)	14 (27)
Pruritus	7 (26)	4 (17)	11 (22)
Muscle spasms	8 (30)	2 (8.3)	10 (20)

Conclusions

- This is the largest global phase 3 trial in second-line imatinib-resistant advanced GIST that
 demonstrates the significance of ctDNA NGS-based analysis of the complex landscape of KIT
 mutations and correlates mutational status with treatment response
- Patients with KIT exon 11 + 13/14 (ATP-binding pocket) mutations derived clinical benefit from sunitinib but not ripretinib
- Patients with KIT exon 11 + 17/18 (activation loop) mutations derived clinical benefit from ripretinib but not sunitinib
- INSIGHT: Planned phase 3, randomized, multicenter, open-label study evaluating ripretinib vs sunitinib in patients with advanced GIST previously treated with imatinib harboring KIT exon 11 + 17 and/or 18 mutations

INSIGHT trial design

INCLUSION CRITERIA

Patients with GIST previously treated with imatinib

- 1 prior line of imatinib
- KIT exon 11 + 17 and/or 18 via ctDNA during screening
 - KIT exon 9, 13, and/or 14 excluded
 - Other co-mutations are allowed
- Measurable disease per mRECIST
- ECOG performance status ≤2

PLANNED PHASE 3, RANDOMIZED, MULTICENTER, OPEN-LABEL STUDY

Primary endpoint

PFS by IRR using mRECIST

Key secondary endpoints

- ORR by IRR using mRECIST
- OS

Acknowledgments

- We thank the patients and their families and caregivers, the investigators, and the investigational site staff of the INTRIGUE study
- The INTRIGUE study was funded by Deciphera Pharmaceuticals, LLC
- We thank Meena Kusi, MS, PhD (Deciphera Pharmaceuticals, LLC) for contributing to this analysis
- Medical writing support was provided by Lauren Hanlon, PhD, CMPP, of AlphaBioCom, LLC, King of Prussia, PA, USA, and was funded by Deciphera Pharmaceuticals, LLC