DCC-3116, a First-in-Class Selective Inhibitor Of ULK1/2 Kinases and Autophagy, Combines with the KRASG12C Inhibitor Sotorasib Resulting in Tumor Regression in NSCLC Xenograft Models
Martin McMahon, Disclosures:

Research Support:
• Deciphera Pharmaceuticals
• Revolution Medicines
• Pfizer Inc.

Honoraria:
• Deciphera Pharmaceuticals
• Revolution Medicines
• Pfizer Inc.
• Autobahn Labs
• Aro Biotherapeutics
Mutationally activated H-, K- or NRAS genes encode oncoproteins that drive the aberrant and lethal behavior of ~20% of all human cancers.

Once considered “undruggable”, RAS oncoproteins are now at the center of a massive effort to develop direct pharmacological inhibitors of RAS.GDP or RAS.GTP, representing a major advance for cancer therapy.

However, as with most/all single-agent, pathway-targeted cancer therapies, the durability of patient response is limited by the emergence of drug resistant disease generally due to on-target reactivation of the RAS-regulated RAF>MEK>ERK MAP kinase and/or the PI3’-kinase>AKT signaling pathways.

Hence, the depth and durability of patient responses will likely be greatly improved by the development of novel combination therapies whether it be RAS inhibitors plus: 1. Conventional chemoRx; 2. Radiation therapy; 3. immuno-oncology or; 4. Pathway-targeted agents.
Inhibition of KRAS>RAF>MEK>ERK signaling with trametinib in RAS-driven cancers induces cytoprotective autophagy

McMahon Lab

Der Lab

Lee et al., (2019) PNAS
Luo Lab

- Inhibition of KRAS>RAF>MEK>ERK signaling in RAS-driven cancer cell lines leads to induced autophagy

- Combined inhibition of KRAS>RAF>MEK>ERK signaling plus lysosome function (HCQ) promotes regression of established xenografts

- Patient 1 showed a striking anti-tumor response to the combination of trametinib plus HCQ (T2,HCQ1200)

A trametinib/HCQ combination elicits regression of a KRAS-mutated pancreatic cancer PDX

PDX 220 (Pancreatic Cancer)

- Control
- Trametinib
- Hydroxychloroquine
- Trametinib plus Hydroxychloroquine
- Gem + Abraxane

N=6 for all groups

Gem + Abraxane
Trametinib + 400 mg HCQ
Trametinib + 800 mg HCQ
Everolimus
Gem + Abraxane

Trametinib

Pre-treatment 2 months T/HCQ
MEK1/2 inhibition leads to activation of the LKB1►AMPK►ULK1 signaling axis

Oncogenic B-RAF Negatively Regulates the Tumor Suppressor LKB1 to Promote Melanoma Cell Proliferation

Bin Zheng,1,2,* Joseph H. Jeong,4 John M. Asara,1,3 Yuan-Ying Yuan,1 Scott R. Grant,5 Lynda Chin,4 and Lewis C. Cantley1,2,*
1Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
2Department of Systems Biology
3Department of Pathology
4Harvard Medical School, Boston, MA 02115, USA
5Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
*Correspondence: bzheng@bidmc.harvard.edu (B.Z.), lewis_cantley@mgh.harvard.edu (L.C.C.)
ULK1/2 Inhibitor (DCC-3116) Inhibits Autophagy Pathways Activated by Tumor-Targeted Therapies

- Inhibitors of tumor driver pathways activate ULK-dependent tumor survival pathways that mediate resistance through autophagy.
- ULK inhibition leads to striking pre-clinical anti-cancer activity in combination with tumor driver inhibitors within the RTK/RAS/MAPK pathway.
- DCC-3116 is a First-in-Class target opportunity in RTK, RAS, MAPK mutant cancers. DCC-3116 is currently under clinical investigation (NCT04892017).
- Deciphera is on track to initiate combination cohorts by the end of 2022.

>70% of human cancers depend on RTK/RAS/MAPK signaling.

ULK1 and ULK2 kinases are initiating factors for activation of autophagy.

DCC-3116 is the only selective and potent ULK kinase inhibitor in clinical development.

Phase 1 dose escalation includes rational combination cohorts.
DCC-3116 is a Potent & Selective, First-In-Class ULK1/2 Inhibitor Designed to Inhibit Autophagy

Summary

Highly Potent (IC\textsubscript{50} cellular NanoBRET)

- ULK1: \textbf{6nM}
- ULK2: \textbf{9nM}

High Kinome Selectivity

- No off-target kinases within 30-fold of ULK1
- Only 5 kinases within 100-fold of ULK1

Designed to avoid CNS exposure

- Low Ratio Brain\textsubscript{ff}/Plasma\textsubscript{ff} (4.3%) to avoid CNS autophagy

Phase 1 study initiated in June 2021

- NCT04892017

Source and Notes: Composite of enzyme and cellular kinase phosphorylation data was used. The size of the red circle corresponds to the IC\textsubscript{50} value obtained. No circles are plotted for kinases with IC\textsubscript{50} > 1 \muM; Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com).
DCC-3116 inhibits ULK1/2 activity and autophagic flux in a KRASG12C mutated NSCLC cell line

DCC-3116 inhibits KRASG12C inhibitor-induced ULK → pATG13 signaling

Diagram:
- **Basal autophagy:**
 - ULK1/2 → ATG13
- **Soto/adagrasib-induced autophagy:**
 - ULK1/2 → ATG13
- **DCC-3116:**
 - ULK1/2 → ATG13

Graphs:
- **H358 pATG13 ELISA:**
 - Adagrasib
 - Sotorasib
 - Soto/adagrasib
- **H358 pATG13 ELISA (IC\textsubscript{50}):**
 - Adagrasib + DCC-3116 50 nM
 - Sotorasib + DCC-3116 59 nM
DCC-3116 inhibits ULK1/2 activity and autophagic flux in a KRAS^{G12C} mutated NSCLC cell line

DCC-3116 inhibits KRAS^{G12C} inhibitor-induced ULK → pATG13 signaling

DCC-3116 inhibits KRAS^{G12C} inhibitor-induced autophagy flux

Basal autophagy

Soto/adagrasib-induced autophagy

DCC-3116

ULK1/2

P

ATG13

H358

pATG13 ELISA

DCC-3116 inhibits KRAS^{G12C} inhibitor-induced autophagy flux

Autophagic Flux maturation

Flux = mCherry/GFP fused LC3-II

H358

mCherry-GFP tagged LC3

100nM Sotorasib

Sotorasib + DCC-3116

50 nM

IC<sub>50

100nM Adagrasib

Adagrasib + DCC-3116

59 nM

DMSO
DCC-3116 produces deeper and longer regressions in combination with sotorasib in a KRASG12C-mutated NSCLC xenograft model.

Spaghetti plots demonstrating sustained regressions in combination cohorts.

Sotorasib dosed QD and DCC-3116 dosed BID.
DCC-3116 Outperformed Lysosomal Inhibitor Chloroquine as a Combination Partner to Sotorasib in a KRASG12C NSCLC Model

Calu-1 is a NSCLC xenograft model with a heterozygous KRASG12C mutation

- DCC-3116 cooperates with sotorasib for superior control of Calu-1 KRASG12C-driven xenografts
- Combination sotorasib plus DCC-3116 elicits tumor regression
DCC-3116 Exhibits Combination Efficacy with Sotorasib and Adagrasib in a PDX Lung Cancer KRASG12C Model

LU11554 is a KRASG12C-driven NSCLC PDX model with KEAP1 and CDKN2A mutations.
Summary & Conclusions

• Inhibitors targeting mutant RTK>RAS>BRAF cancers activate ULK1/2-mediated autophagy as an adaptive treatment resistance mechanism.

• Sotorasib and adagrasib activate ULK1/2-mediated autophagy that is inhibited by DCC-3116 \textit{in vitro}. Combination therapy with DCC-3116 translates to deeper and longer tumor regressions \textit{in vivo}.

• These data demonstrate a compelling rationale to evaluate DCC-3116 in combination with KRASG12C inhibitors in NSCLC patients.

• DCC-3116 is currently in a Phase 1 clinical trial in patients with advanced solid tumors with documented KRAS, NRAS or BRAF mutations (NCT04892017).
Cooperation between DCC-3116, a First-in-Class, Selective Inhibitor Of ULK1/2 Kinases, & KRASG12C Inhibition in Preclinical Models of NSCLC

Deciphera Pharmaceuticals, LLC

- Madhumita Bogdan
- Mary J. Timson
- Hikmat Al-Hashimi
 - Yu Zhan
- Bryan D. Smith
- Daniel L. Flynn

Huntsman Cancer Institute

- Phaedra Ghazi
- Dilru Silva
- Conan G. Kinsey