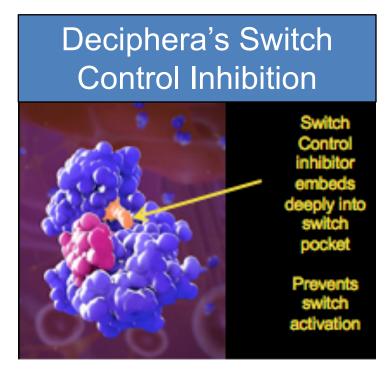


Making Cancer History®

2016 EORTC-NCI-AACR December 1, 2016

DCC-2618, a pan-KIT and PDGFRA switch control inhibitor, achieves proof-of-concept in a first-in-human study

Filip Janku, Suzanne George, Albi Razak, Michael Gordon, David Brooks, Daniel Flynn, Michael Kaufman, Jama Pitman, Bryan Smith, Neeta Somaiah, Eric Gerstenberger, Deb Westwood, Oliver Rosen

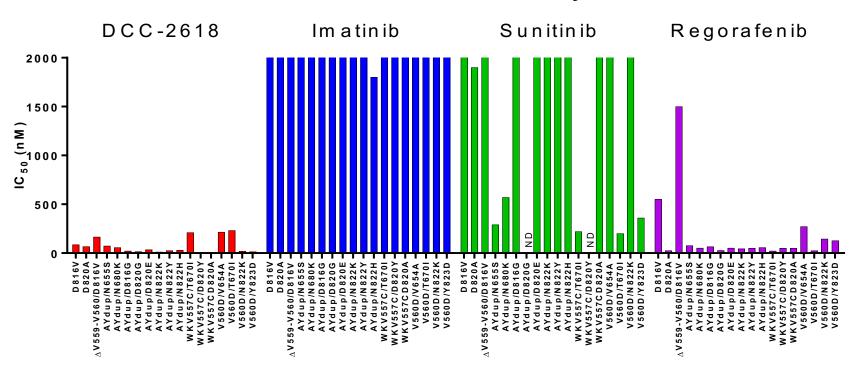


DISCLOSURES

- F. Janku: Research funding from Deciphera, SAB Deciphera
- S. George: Research funding from Deciphera, Blueprint Medicine, Pfizer, Bayer, Novartis
- A. Razak: Research funding from Deciphera
- M. Gordon: Research funding from Deciphera
- D.G. Brooks, D. Flynn, M. Kaufman, J. Pitman, O. Rosen, B.
 Smith, D. Westwood: Deciphera employees
- Ongoing study: Presentation contains preliminary data that are partially monitored and validated

BACKGROUND

- DCC-2618 is a KIT and PDGFRA inhibitor resilient to gain-of-function and drug resistance mutations mutations
 - Potency independent of ATP concentration
- DCC-2618 was designed to potently inhibit a broad range of mutations in KIT and PDGFRA kinases



 Gastrointestinal stromal tumor (GIST) is an important disease to achieve proof-of-concept in the FIH study due to the multiplicity and heterogeneity of resistance mutations within KIT

RATIONALE FOR DCC-2618 STUDY

- Activity regardless whether primary mutation is in KIT Exon 9, Exon 11, or Exon 17
 - IC₅₀ for KIT Exon 11 deletion 3 nM, IC₅₀ PDGFRA D842V 60 nM
- Broad activity in secondary KIT mutations across Exons 13, 14, 17, and 18
 - Active metabolite DP-5439 possesses comparable activity across all mutations
- KIT T670I and V654A secondary mutations are the least sensitive to DCC-2618
 - IC₅₀ for KIT T670I 221 nM , IC₅₀ for 189 nM for KIT V654A

CHO KIT Mutant Assays

DCC-2618-01-001: DESIGN AND OBJECTIVES

Design (NCT02571036)

 Pharmacologically-guided 3+3 escalation phase I study of oral DCC-2618 administered BID every 28 days

Objectives

- Primary: Safety, tolerability, maximum tolerated dose (MTD), doselimiting toxicities (DLT)
- Secondary: Pharmacokinetic profile, antitumor efficacy
- Exploratory: Determination of KIT and/or PDGFRA mutations in plasma cell-free DNA (NGS) and serum tryptase

Major eligibility criteria

- Patients with advanced refractory cancers and molecular rationale for activity
- ECOG 0-1
- Adequate organ function
- Prior KIT/PDGFRA inhibitors were allowed

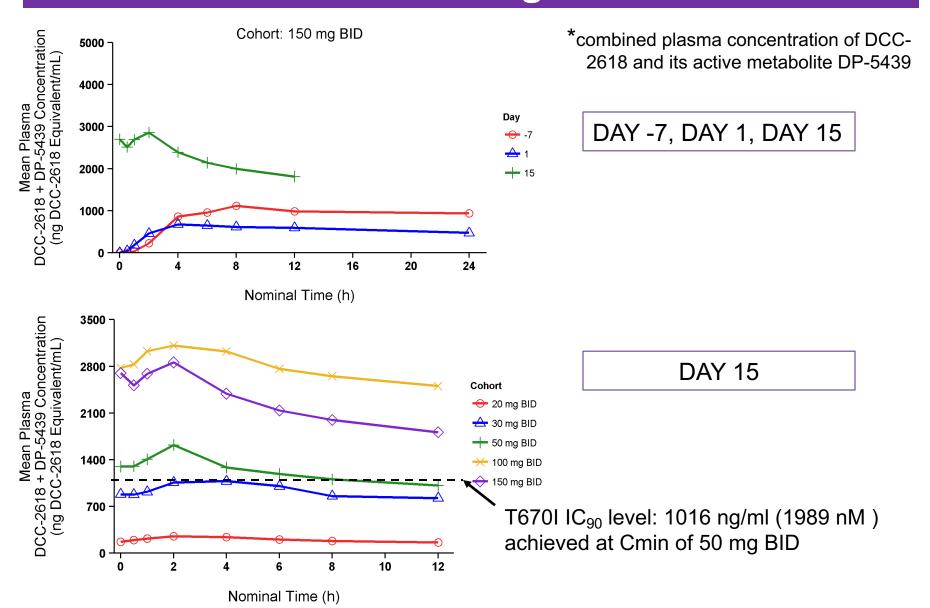
DCC-2618: DOSE LEVELS & PATIENTS CHARACTERISTICS

Enrolled: 24 patients with mean of **4.7 prior therapies**

Dose Level (mg) (Time on Study)	Number of Patients	Tumor Types: Tissue and/or Plasma cfDNA Mutations
20 BID (1x > 1year)	4	GIST: KIT Exon 11 (1x), KIT Exon 17 (1x), PDGFRA (1x) GBM: PDGFRA/KIT/KDR co-amplified (1x)
30 BID (1x 6 months*)	4	GIST: KIT Exon 11 (1x), KIT Exon 11 & 17 (1x) Thymic Carcinoma: KIT Exon 11 (1x) Desmoid tumor (1x)
50 BID (2x > 6 months)	4	GIST : <i>KIT</i> Exon 9 (1x), <i>KIT</i> Exon 11 (3x)
100 BID	6	GIST : <i>KIT</i> Exon 9 (x3), <i>KIT</i> Exon 11 (1x), <i>PDGFRA</i> Exon 18 (1x), SDHA (1x)
150 BID	6	GIST: KIT Exon 9 (x2), KIT Exon 11 (x3), KIT Exon 17 (1x)
200 BID	Enrolling	

^{*}Patient stayed on study following PD due to clinical benefit

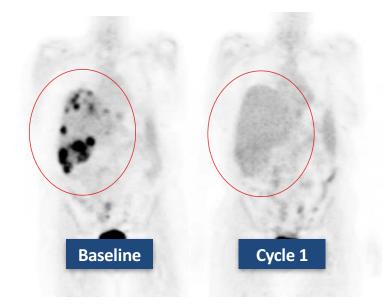
TREATMENT EMERGENT ADVERSE EVENTS (N=24, cut-off 4 NOV 2016)


Adverse Event	Total	G1/2	G3/4	Adverse Event	Total	G1/2	G3/4
Fatigue	10	9	1	Blood CPK increase	3	2	1 ³
Anaemia	9	4	5	Hyperglycemia	3	3	0
Lipase increased	8	6	2 ¹	Hypoalbuminaemia	3	3	0
Dyspnoea	7	7	0	Dizziness	3	3	0
Abdominal pain	6	5	1	Cough	3	3	0
Decreased appetite	6	6	0	Rash	3	3	0
Amylase increased	6	6	0	Hot flush	3	3	0
Vomiting	5	5	0	Thrombocytopenia	2	2	0
Myalgia	5	5	0	Hypothyroidism	2	2	0
Alopecia	5	5	0	Dry mouth	2	2	0
Diarrhoea	4	4	0	Hypoalbuminemia	2	2	0
Weight decreased	4	4	0	AST increased	2	2	0
Hypokalemia	4	3	1	Bilirubin increased	2	2	0
Arthralgia	4	4	0	Hypomagnesaemia	2	2	0
Hand foot syndrome	4	3	0	Hypophosphataemia	2	1	1
Hypertension	4	3	1 ²	Muscle Spasms	2	2	0
Constipation	3	3	0	Headache	2	2	0
Nausea	3	3	0	Anxiety	2	2	0
Edema peripheral	3	3	0	Insomnia	2	2	0
Pyrexia	3	3	0	Dry skin	2	2	0
Increased alk. phosphatase	3	3	0	Melena	2	1	1

¹Grade 3 Lipase Elevation (asymptomatic) was a **DLT** in 100 mg BID Cohort

²150 mg BID Cohort

³30 mg BID Cohort (event considered likely to be exercise-induced)


DCC-2618* Cycle 1 Pharmacokinetics: 150 mg BID Cohort and Across All Dosing Cohorts

DCC-2618: CYCLE 1 PET IN GIST PATIENTS

Dose Level mg BID	Mutant Gene	Patient ID	Investigator Review	CT Scan C3D1
30	KIT	01.001	PMR	SD
50	KIT	01.003	PMR	PD
50	KIT	03.003	PMR	SD
50	KIT	03.004	PMR	SD
50	KIT	04.008	PMR	SD
100	KIT	04.009	PMR	PR
100	KIT	01.004	PMR	SD
100	KIT	04.010	PMR	SD
100	KIT	01.005	PMR	SD
150	KIT	01.007	PMR	SD
150	KIT	02.002	PMR	SD
150	KIT	03.005	PMR	SD
150	KIT	01.006	PMR	PD
150	KIT	04.012	PMR	Too early
150	KIT	03.007	PMD	SD
100	PDGFRA	04.011	SMD	SD
100	SDHA	03.006	SMD	PD

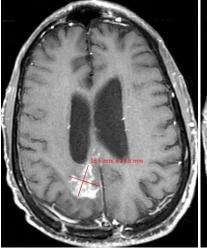
- 14 of 15 patients with KITmutant GIST had PMR
- 13 of 15 patients with KITmutant GIST had PMR confirmed by central review, using EORTC PET response criteria

DCC-2618: RECIST RESPONSES

Baseline CT



CT after cycle 2



- Widely metastatic GIST with KIT Exon 11 deletion, who received 6 different prior KIT inhibitors
- RECIST: partial response (-37%) maintained for 5+ cycles on DL4 100mg BID

Baseline MRI

MRI after cycle 12

- Glioblastoma multiforme with PDGFRA / KIT / KDR co-amplification, who received prior XRT and temozolomide and progressed after 3 months
- RECIST: partial response (-49%), on study for 12+ cycles on DL1 20mg BID
- RANO: PR after cycle 12

SUMMARY OF EFFICACY (n=24)

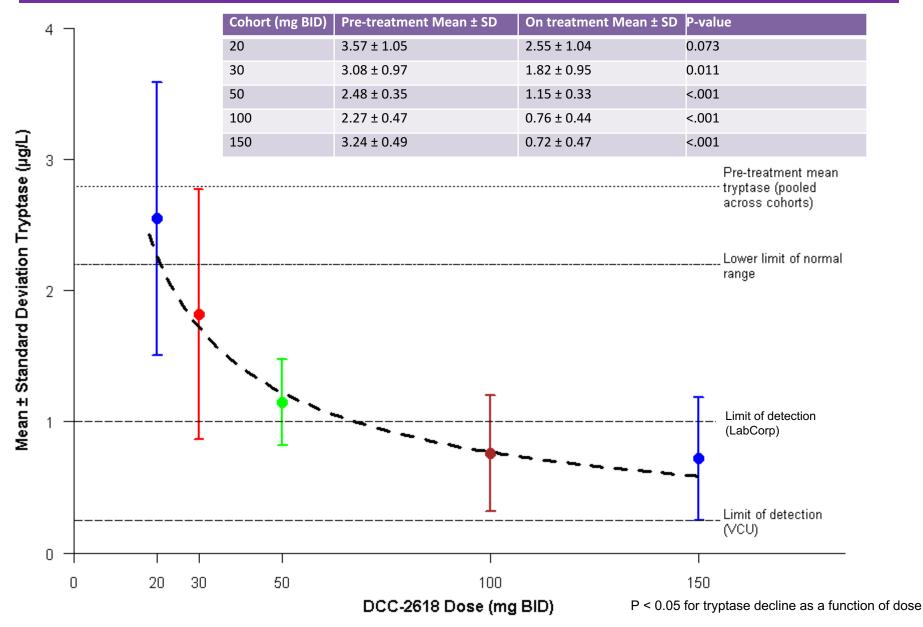
RECIST

- PR in heavily pretreated patient with GIST KIT exon 11/17 mutation
- PR in pretreated patient with GBM with PDGFRA/KIT/KDR coamplification (confirmed by RANO)

PET metabolic responses

 PMR in 14 of 15 patients with heavily pretreated GIST and KIT mutation(s), 13 of these responses have been confirmed by central review (analysis ongoing)

Time on therapy


- A patient with GBM with PDGFRA/KIT/KDR co-amplification on therapy for 12+ months
- Three patients with heavily pretreated GIST on therapy for \geq 6 months

DCC-2618: PLASMA cfDNA KIT MUTATIONS

In **13**/15 patients, we detected total of 33 *KIT* mutations in 6 exons (9, 11, 13, 14, 17, 18)

Patient (dose mg)	No. of <i>KIT</i> mutations	Change in KIT mutation allele fraction (MAF)	Comment		
1 (30 BID)	2	Undetectable after C2 - C6	Includes Exon 17 (N822K) resistance mutation		
2 (50 BID)	1	Undetectable after C2 & C4	Exon 11 initiating mutation		
3 (50 BID)	6	All mutations undetectable after C2	Includes 3 distinct Exon 17 resistance mutations (D816E, D820Y, and Y823D)		
4 (50 BID)	2	MAF 16 & 21 x ↓ after C2	Includes Exon 14 (N680K) resistance mutation		
5 (50 BID)	3	MAF 50 to >600x ↓after C2; 136 to > 600x ↓ after C4	Resistance mutations in Exons 13 (V654A) & Exon 18 (A829P) undetectable after C2 & 4		
6 (100 BID)	1	Undetectable after C2	Exon 9 initiating duplication		
7 (100 BID)	3	MAF 9-10x ↓after C2	Includes known Exon 13 (K642E) and Exon 17 (N822K) resistance mutations		

DCC-2618: DOSE RESPONSE RELATIONSHIP WITH SERUM TRYPTASE LEVELS

CONCLUSIONS

- DCC-2618 is well tolerated to date with an encouraging safety profile and robust exposure following oral doses from 20 to 150 mg BID
 - Starting at 50mg BID, mean trough levels of combined plasma concentration exceed IC₉₀ of least sensitive mutations T670I and V654A
 - MTD has not been reached yet and dose escalation is ongoing
 - Asymptomatic grade 3 lipase elevation has been the only DLT to date
- Preliminary signals of activity per RECIST and PET have been observed in pretreated patient GBM with co-amplification of PDGFRA/KIT/KDR and GIST(s) with KIT mutations
- DCC-2618 leads to rapid clearance of broad spectrum of KIT mutations from plasma cfDNA in patients with heavily pretreated GIST
- Dose-dependent rapid reduction of serum tryptase warrants testing of DCC-2618 in systemic mastocytosis

ACKNOWLEDGEMENTS

MD Anderson Cancer Center

- Neeta Somaiah, MD
- Vivek Subbiah, MD
- Sarina Piha-Paul, MD
- Funda Meric-Bernstam, MD
- Aung Naing, MD
- Shubham Pant, MD
- Chen Guo, PhD
- John de Groot, MD
- Nishma M. Ramzanali
- Divya Sakamuri, MD
- Vanda Stepanek, MD, PhD

Dana Farber Cancer Institute

- Suzanne George, MD
- Michele Dorio, RN
- Melissa Hohos, RN
- Julia J. Jennings
- Sarah Solomon
- Stephanie N. Vangellow

OUR PATIENTS AND THEIR FAMILIES

Princess Margaret Cancer Center

- Albiruni Razak, MD
- Samer Salah
- Penelope Bradbury
- Mara Kolodziejczyk, RN, MScN
- Maryam Masood

Honor Health Research Institute

- Michael Gordon, MD
- Kristin Hendrickson, BA, RN
- Agnieszka Jezierska-Drutel
- Leticia Lebron, RN, BSN

Guardant Health

Elena Helman

Nuventra

- Grant Hogeland, PharmD
- David Mitchell, PhD

Deciphera

- Dennise Greensmith
- Dan Larson
- Linda Martin
- Nicole Turcuotte