Outcomes in patients with advanced gastrointestinal stromal tumor who did not have baseline ctDNA detected in the INTRIGUE study

Jonathan Trent¹, Robin L Jones², Suzanne George³, Hans Gelderblom⁴, Patrick Schöffski⁵, Margaret von Mehren⁶, John R Zalcberg⁷, Yoon-Koo Kang⁸, Albiruni Abdul Razak⁹, Steven Attia¹⁰, Axel Le Cesne¹¹, William Reichmann¹², Kam Sprott¹², Haroun Achour¹², Matthew L Sherman¹², Rodrigo Ruiz-Soto¹², Jean-Yves Blay¹³, Michael C Heinrich^{14,15}, Sebastian Bauer^{16,17} on behalf of the INTRIGUE investigators

¹Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, USA; ²Sarcoma Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK; ³Dana-Farber Cancer, Leiden, Netherlands; ⁵University Hospitals Leuven, Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium; ⁶Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA; ⁷Monash University School of Public Health and Preventive Medicine and Department of Medical Oncology, Alfred Health, Melbourne, Victoria, Australia; ⁸Asan Medical Center, University of Ulsan, Seoul, Korea; ⁹Toronto Sarcoma Program, Princess Margaret Cancer Center, Toronto, ON, Canada; ¹⁰Mayo Clinic, Jacksonville, FL, USA; ¹¹Gustave Roussy, Villejuif, France; ¹²Deciphera Pharmaceuticals, LLC, Waltham, MA, USA; ¹³Centre Léon Bérard, Lyon, France; ¹⁴Portland VA Health Care System, Portland, OR, USA; ¹⁵OHSU Knight Cancer Institute, Portland, OR, USA; ¹⁶Center, University Hospital Essen, Germany; ¹⁷German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Germany

Introduction

- Ripretinib is a switch-control KIT/PDGFRA tyrosine kinase inhibitor (TKI) approved for patients with gastrointestinal stromal tumor (GIST) who received prior treatment with 3 or more kinase inhibitors, including imatinib¹
- Sunitinib is the approved second-line therapy for patients with advanced GIST following progression on or intolerance to imatinib²
- INTRIGUE (NCT03673501) is a randomized, open-label, global, multicenter phase 3 study comparing ripretinib vs sunitinib in patients with advanced GIST who had disease progression on or were intolerant to imatinib³
 - Ripretinib and sunitinib were comparable in terms of progression-free survival (PFS) in the KIT exon 11 intention-to-treat (ITT) and all-patient ITT populations ; meaningful clinical activity, fewer grade 3/4 treatmentemergent adverse events (TEAEs), and improved tolerability were observed with ripretinib³
 - Ripretinib was included in the National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology for GIST (version 1.2023) as a preferred second-line regimen for patients intolerant to sunitinib⁴
 - Exploratory baseline circulating tumor DNA (ctDNA) next-generation sequencing (NGS) analysis from INTRIGUE showed that patients harboring primary *KIT* exon 11 mutations and secondary resistance mutations exclusively in *KIT* exons 17/18 (KIT activation loop) derived greater clinical benefit from ripretinib vs sunitinib⁵; these results support further investigation in the phase 3 INSIGHT trial (NCT05734105)
 - Patients harboring primary *KIT* exon 11 mutations and secondary resistance mutations exclusively in *KIT* exons 13/14 (KIT ATP-binding pocket) derived greater clinical benefit from sunitinib vs ripretinib
- Outcomes in patients with advanced GIST who had no detectable ctDNA (ctDNA-ND) at baseline have not been thoroughly evaluated previously
- In the VOYAGER trial, 14% of patients had ctDNA-ND in third-line GIST; however, outcomes were not explored for these patients⁶
- Here, we present exploratory data from patients in the phase 3 INTRIGUE trial³ who had ctDNA-ND vs ctDNA detected (ctDNA-D) at baseline

Methods

- In INTRIGUE, adult patients with advanced GIST who had disease progression on or intolerance to imatinib were randomized 1:1 to receive ripretinib 150 mg once daily (QD) or sunitinib 50 mg QD (4 weeks on/2 weeks off; **Figure 1**)³
- Baseline (cycle 1, day 1) peripheral whole blood was collected in 10-mL Streck cell-free DNA blood collection tubes and shipped to central laboratories for plasma isolation⁷
- DNA extraction was performed by Guardant Health, and samples were analyzed using Guardant360[®], a 74-gene ctDNA NGS-based assay⁴
- $ctDNA-D = sample successfully analyzed with \geq 1 somatic alteration detected$ (single nucleotide variant [SNV] or insertion and deletion [INDEL])
- Data cutoff was September 1, 2021, for all data except overall survival (OS), which had a data cutoff of September 1, 2022

Figure 1. INTRIGUE study design

^aAs determined by local pathology report at randomization. Data cutoff: September 1, 2021, for all data except OS (data cutoff: September 1, 2022). ctDNA, circulating tumor DNA; GIST, gastrointestinal stromal tumor; IRR, independent radiologic review; mRECIST v1.1, modified response evaluation criteria in solid tumors version 1.1; ORR, objective response rate; OS, overall survival; PDGFRA, platelet-derived growth factor receptor α; PFS, progression-free survival; QD, once daily.

Presented at the 2023 ASCO Annual Meeting, June 2–6, 2023; Chicago, IL, USA

•	ctDNA
•	ctDNA
	patien
	— Ar

	SL
_	Ar
	รเ

Table 1. Patient demographics and baseline clinical characteristics

Sex, n (%) Female Male Age, years, r

(min, max) **Race**, n (%) White Asian

Black or Afri Native Hawai American In

Not reported Region, n (%) North Ameri Europe

Asia-Pacific South Ameri **ECOG PS at s**

Mutation ty *KIT* exon 9 KIT exon 11

KIT/PDGFRA \ Other *KIT*^b/*P* Sum of longe Median, mm

(min, max)

growth factor receptor α; WT, wild-type.

Results

A was analyzed from 362/453 randomized patients (**Figure 2**)

was detected for 280/362 (77.3%) patients, whereas 82/362 (22.7%) nts did not have detectable ctDNA

mong patients with ctDNA-ND, 40 received ripretinib, while 42 received unitinib

mong patients with ctDNA-D, 135 received ripretinib and 145 received unitinik

Figure 2. ctDNA analysis and detection

CNV, copy number variant; ctDNA, circulating tumor DNA; ctDNA-D, ctDNA detected; ctDNA-ND, ctDNA not detected; INDEL, insertion and deletion; QC, quality control; SNV, single nucleotide variant.

• Patients with ctDNA-ND (82/362, 22.7%) were younger (median: 55.5 vs 62.0 years) and had smaller sums of longest diameters of target lesions (median [range]: 57.6 [11–459] vs 108.8 [15–418] mm) vs patients with ctDNA-D (280/362, 77.3%; **Table 1**)

		ctDNA-ND		ctDNA-D			
	Ripretinib	Sunitinib	Total	Ripretinib	Sunitinib	Total	
	(n = 40)	(n = 42)	(N = 82)	(n = 135)	(n = 145)	(N = 280)	
	13 (32.5)	18 (42.9)	31 (37.8)	49 (36.3)	53 (36.6)	102 (36.4)	
	27 (67.5)	24 (57.1)	51 (62.2)	86 (63.7)	92 (63.4)	1/8 (63.6)	
iedian,	52.5 (18, 80)	57.5 (39, 77)	55.5 (18, 80)	62.0 (25, 86)	63.0 (28, 88)	62.0 (25, 88)	
	28 (70.0)	31 (73.8)	59 (72.0)	96 (71.1)	103 (71.0)	199 (71.1)	
	6 (15.0)	6 (14.3)	12 (14.6)	10 (7.4)	8 (5.5)	18 (6.4)	
can American	1 (2.5)	0	1 (1.2)	11 (8.1)	11 (7.6)	22 (7.9)	
iian or Other Pacific Islander	0	0	0	2 (1.5)	1 (0.7)	3 (1.1)	
dian or Alaska Native	0	0	0	0	1 (0.7)	1 (0.4)	
d/Other	5 (12.5)	5 (11.9)	10 (12.2)	16 (11.9)	21 (14.5)	37 (13.2)	
			20 (24 4)				
са	17 (42.5)	11 (26.2)	28 (34.1)	63 (46.7)	56 (38.6)	119 (42.5)	
	16 (40.0) 5 (12 5)	22 (52.4)	38 (46.3)	60 (44.4) 7 (F 2)	73 (50.3)	133 (47.5)	
	5 (12.5) 2 (5 0)	5(11.9)	10 (12.2) 6 (7 2)	7 (5.2) 5 (2.7)	10 (6.9) 6 (4 1)	17 (0.1)	
creening n (%)	2 (3.0)	4 (9.5)	0(7.5)	5(5.7)	0 (4.1)	11 (5.9)	
	25 (62 5)	33 (78 6)	58 (70 7)	84 (62 2)	74 (51 0)	158 (56 /)	
	14 (35 0)	9 (21 4)	23 (28 0)	50 (37 0)	70 (48 3)	120 (<u>4</u> 2 9)	
	1 (2.5)	0	1 (1.2)	1 (0.7)	1 (0.7)	2 (0.7)	
be ª, n (%)	. ()	•	. ()	. (,	. (,	_ (0)	
	6 (15.0)	5 (11.9)	11 (13.4)	20 (14.8)	19 (13.1)	39 (13.9)	
	26 (65.0)	31 (73.8)	57 (69.5)	98 (72.6)	104 (71.7)	202 (72.1)	
NT	6 (15.0)	3 (7.1)	9 (11.0)	6 (4.4)	10 (6.9)	16 (5.7)	
DGFRA	2 (5.0)	3 (7.1)	5 (6.1)	11 (8.1)	12 (8.3)	23 (8.2)	
est diameters of target le	sions at bas	eline based	d on IRR				
l,	73.2	50.2	57.6	111.2	106.0	108.8	
	(11, 459)	(15, 209)	(11, 459)	(15, 392)	(15, 418)	(15, 418)	

Results are from the ctDNA analysis of all patients in the ITT population

^aAs determined by local pathology report at randomization. ^bOther *KIT* indicates a mutation in a *KIT* exon other than exon 9 or 11

ctDNA, circulating tumor DNA; ctDNA-D, ctDNA detected; ctDNA-ND, ctDNA not detected; ECOG PS, Eastern Cooperative Oncology Group performance status; IRR, independent radiologic review; ITT, intention-to-treat; PDGFRA, platelet-derived

Efficacy

Figure 3. Kaplan-Meier analysis of PFS (A) and OS (B) for patients with ctDNA-ND vs ctDNA-D

PFS analysis was performed based on IRR using mRECIST v1.1 in the ITT populatior ctDNA-D is defined as sample successfully analyzed with at least 1 somatic alteration detected (SNV or INDEL). Data cutoff for PFS: September 1, 2021. Data cutoff for OS: September 1, 2022 deletion; IRR, independent radiologic review; ITT, intention-to-treat; mRECIST v1.1, modified Response Evaluation Criteria in Solid Tumors version 1.1; NE, not estimable; OS, overall survival; PFS, progression-free survival; SNV, single nucleotide variant.

Table 2. ORR in patients with ctDNA-ND vs ctDNA-D

			ctDN	IA-ND	ctDNA-D		
	ctDNA-ND (n = 82)	ctDNA-D (n = 280)	Ripretinib (n = 40)	Sunitinib (n = 42)	Ripretinib (n = 135)	Sunitinib (n = 145)	
RR , n (%)	21 (25.6)	49 (17.5)	10 (25.0)	11 (26.2)	26 (19.3)	23 (15.9)	
5% CI	(16.6 to 36.4)	(13.2 to 22.5)	(12.7 to 41.2)	(13.9 to 42.0)	(13.0 to 26.9)	(10.3 to 22.8)	
esponse difference, (95% Cl)	-8.1 (-19.2 to 1.4)		–1.2 (–19.6 to 17.5)		3.4 (−5.5 to 12.4)		

Results are from the ctDNA analysis of all patients in the ITT population ctDNA-D is defined as sample successfully analyzed with at least 1 somatic alteration detected (SNV or INDEL) Data cutoff: September 1, 2021 CI, confidence interval; ctDNA, circulating tumor DNA; ctDNA-D, ctDNA detected; ctDNA-ND, ctDNA not detected; INDEL, insertion and deletion; ITT, intention-totreat; ORR, objective response rate; SNV, single nucleotide variant.

Figure 4. Kaplan-Meier analysis of PFS for patients treated with ripretinib or sunitinib in the ctDNA-ND (A) and ctDNA-D (B) populations

PFS analysis was performed based on IRR using mRECIST v1.1 in the ITT population ctDNA-D is defined as sample successfully analyzed with at least 1 somatic alteration detected (SNV or INDEL). Data cutoff: September 1, 2021 CI, confidence interval; ctDNA, circulating tumor DNA; ctDNA-D, ctDNA detected; ctDNA-ND, ctDNA not detected; HR, hazard ratio; INDEL, insertion and deletion: IRR, independent radiologic review; ITT, intention-to-treat; mRECIST v1.1, modified Response Evaluation Criteria in Solid Tumors version 1.1; NE, not estimable; PFS, progression-free survival; SNV, single nucleotide variant.

Study sponsor

This study is sponsored by Deciphera Pharmaceuticals, LLC, Waltham, MA, USA.

Acknowledgments

The authors thank the patients and their families and caregivers, the investigators, and the investigational site staff of the INTRIGUE study. Medical writing support was provided by Marita Chakhtoura, MS, PhD, of AlphaBioCom, a Red Nucleus company, and was funded by Deciphera Pharmaceuticals, LLC.

• PFS and OS were longer in patients with ctDNA-ND vs ctDNA-D (**Figure 3**)

CI, confidence interval; ctDNA, circulating tumor DNA; ctDNA-D, ctDNA detected; ctDNA-ND, ctDNA not detected; HR, hazard ratio; INDEL, insertion and

• Objective response rate was higher in patients with ctDNA-ND vs ctDNA-D (**Table 2**)

• Median PFS was not different between treatment arms in patients with ctDNA-ND (**Figure 4**) • OS was similar with ripretinib vs sunitinib in the ctDNA-ND group (not estimable for both ripretinib and sunitinib; HR 0.84; 95% CI, 0.25 to 2.75; nominal P = 0.7674) and in the ctDNA-D group (median 27.7 vs 29.5 months; HR 1.05; 95% CI, 0.75 to 1.47; nominal P = 0.7609; data not shown)

• Patients in the ctDNA-ND group with a *KIT* exon 11 mutation, other *KIT/PDGFRA* mutation, or no *KIT/PDGFRA* mutation (*KIT/PDGFRA* wild-type) based on local pathology report at randomization, had numerically longer PFS with ripretinib vs sunitinib, whereas patients with a *KIT* exon 9 mutation had numerically longer PFS with sunitinib vs ripretinib in both the ctDNA-ND and ctDNA-D groups (**Figure 4**)

Figure 5. Forest plot of PFS by *KIT* mutational status as determined by local pathology report at randomization

ctDNA-ND KIT exon 11, KIT/PDGFRA, K *KIT* exon 9^a

KIT exon 11 KIT/PDGFRA, K KIT exon 9^a

0.25 0.5 ctDNA-D is defined as sample successfully analyzed with at least 1 somatic alteration detected (SNV or INDEL) ^aAs determined by local pathology report at randomization CI, confidence interval; ctDNA, circulating tumor DNA; ctDNA-D, ctDNA detected; E, number of events; HR, hazard ratio; INDEL, insertion and deletion; IRT, interactive response technology; NE, not estimable; PDGFRA, platelet-derived growth factor receptor α; PFS, progression-free survival; SNV, single nucleotide variant; WT, wild-type.

Safety

• In general, dose interruptions, dose reductions, and treatment discontinuations due to TEAEs were lower with ripretinib vs sunitinib; however, there were more treatment discontinuations due to TEAEs with ripretinib vs sunitinib in the ctDNA-ND group (**Table 3**)

Number of pat **Any TEAE**

Any grade 3/4 T

Any drug-relate Any grade 3/4 dr

Any treatment-

Any drug-related

Any TEAE leadin

Any TEAE leadin Any TEAE leadin

Any TEAE leadin

Any drug-related

Data cutoff: September 1, 2021.

CONCLUSIONS

- marker

References

- 1) Deciphera Pharmaceuticals, LLC. QINLOCK prescribing information. (Last revised 12/2022). 2) Pfizer Laboratories. SUTENT prescribing information. (Last revised 8/2021).
- 3) Bauer S, et al. / *Clin Oncol*. 2022;40:3918-28 4) National Comprehensive Cancer Network. NCCN guidelines gastrointestinal stromal tumors (GISTs) version 1.2023. (2023). 5) Bauer S, et al. / *Clin Oncol*. 2023;41:S397784.
- 6) Serrano C, et al. *J Clin Oncol*. 2022;40:S101. 7) Lanman RB, et al. PLoS One. 2015;10:e0140712.

	Ripretinib n (E)	Sunitinib n (E)	Median ripretinib (months)	Median sunitinib (months)	HR (95% CI)	Favors Favors ripretinib _: sunitinib
	40 (17)	42 (22)	16.6	11.0	0.73 (0.39, 1.39)	⊢
ther <i>T/PDGFRA</i> WT ^a	34 (13)	37 (21)	NE	11.0	0.56 (0.28, 1.12)	⊢↓
	6 (4)	5 (1)	4.0	NE	4.34 (0.47, 40.09)	⊢
	135 (101)	145 (87)	6.8	6.9	1.23 (0.92, 1.64)	F ◆ -I
ther IT/PDGFRA WT ^a	115 (82)	126 (77)	6.8	6.3	1.06 (0.77, 1.44)	⊢
	20 (19)	19 (10)	5.5	13.8	2.96 (1.37, 6.41)	⊢

• Safety was similar between ctDNA groups and consistent with the primary analysis (**Table 3**) • Fewer patients had grade 3/4 TEAEs with ripretinib vs sunitinib in both groups (ctDNA-ND, 14 [35.0%] vs 29 [69.0%]; ctDNA-D, 56 [41.5%] vs 94 [65.7%]; **Table 3**)

Table 3. TEAE summary for patients with ctDNA-ND and ctDNA-D

	ctDNA-ND			ctDNA-D			
	Ripretinib	Sunitinib	Total	Ripretinib	Sunitinib	Total	
ents, n (%)	(n = 40)	(n = 42)	(N = 82)	(n = 135)	(n = 143)	(N = 278)	
	40 (100.0)	41 (97.6)	81 (98.8)	134 (99.3)	143 (100.0)	277 (99.6)	
EAE	14 (35.0)	29 (69.0)	43 (52.4)	56 (41.5)	94 (65.7)	150 (54.0)	
d TEAE	39 (97.5)	40 (95.2)	79 (96.3)	126 (93.3)	141 (98.6)	267 (96.0)	
rug-related TEAE	10 (25.0)	25 (59.5)	35 (42.7)	32 (23.7)	77 (53.8)	109 (39.2)	
emergent SAE	6 (15.0)	6 (14.3)	12 (14.6)	42 (31.1)	42 (29.4)	84 (30.2)	
treatment-emergent SAE	3 (7.5)	2 (4.8)	5 (6.1)	11 (8.1)	16 (11.2)	27 (9.7)	
g to dose reduction	9 (22.5)	20 (47.6)	29 (35.4)	26 (19.3)	67 (46.9)	93 (33.5)	
g to dose interruption	10 (25.0)	20 (47.6)	30 (36.6)	43 (31.9)	60 (42.0)	103 (37.1)	
g to treatment discontinuation	3 (7.5)	2 (4.8)	5 (6.1)	4 (3.0)	15 (10.5)	19 (6.8)	
g to death	1 (2.5)	0	1 (1.2)	2 (1.5)	3 (2.1)	5 (1.8)	
TEAE leading to death	0	0	0	0	1 (0.7)	1 (0.4)	

The analysis was performed on the safety population ctDNA-D is defined as sample successfully analyzed with at least 1 somatic alteration detected (SNV or INDEL).

ctDNA, circulating tumor DNA; ctDNA-D, ctDNA detected; ctDNA-ND, ctDNA not detected; INDEL, insertion and deletion; SAE, serious adverse event; SNV, single nucleotide variant; TEAE, treatment-emergent adverse event.

Patients with ctDNA-ND in both treatment arms had better efficacy outcomes vs patients with ctDNA-D

Patients with ctDNA-ND were younger and had smaller sums of longest diameters of target lesions vs patients with ctDNA-D

• Median PFS was not different between treatment arms in patients with ctDNA-ND, suggesting ctDNA-ND was not a predictor of response for either ripretinib or sunitinib Although little is known about the biology determining the shedding of ctDNA in GIST, these data warrant further investigation of ctDNA-ND as both a predictive and prognostic

Disclaimer

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® or the authors of this poster.

