Efficacy and Safety of Ripretinib vs Sunitinib in Patients with Advanced Gastrointestinal Stromal Tumor Previously Treated with Imatinib: A Phase 2 Multicenter, Randomized, Open-Label Study in China

¹Peking University Cancer Hospital & Institute, Beijing, China; ²The First Affiliated Hospital of Chongqing Medical University, China; ⁴Sun Yat-sen University Cancer Center, Guangzhou, China; ³Harbin Medical University Cancer Hospital, Fuzhou, China; ⁵The Affiliated Hospital of Qingdao, China; ⁴Sun Yat-sen University, Qingdao, China; ⁶Fujian Medical University Union Hospital, Fuzhou, China; ⁷The First Affiliated Hospital, Sun Yat-sen University, Chongqing, China; ⁶Fujian Medical University Cancer Center, Guangzhou, China; ⁷The First Affiliated Hospital, Sun Yat-sen University, Chongqing, China; ⁶Fujian Medical University Cancer Center, Guangzhou, China; ⁶Fujian Medical University Cancer Center, Guangzhou, China; ⁹The Affiliated Hospital, Sun Yat-sen University, Chongqing, China; ⁹The First Affiliated Hospital, Sun Yat-sen University, Chongqing, China; ⁹The Affiliated Hospital, Sun Ya Guangzhou, China; ⁸Fudan University Shanghai Cancer Center, Shanghai, China; ¹⁰The Fourth Hospital, Shanghai, China; ¹¹Renji Hospital, Shanghai, China; ¹⁰The Fourth Hospital, Shanghai, China; ¹⁰The Fourth Hospital, Shanghai, China; ¹²Fudan University Zhongshan Hospital, Shanghai, China; ¹⁰The Fourth Hospital, Shanghai, China; ¹¹Renji Hospital, Shanghai, China; ¹⁰The Fourth Hospital, Shan ¹³Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ¹⁴Chinese PLA General Hospital, Sun Yat-sen University, Guangzhou, China; ¹⁸Peking University of Science and Technology, Wuhan, China; ¹⁹Zai Lab (Shanghai) Co., Ltd, Shanghai, China

OBJECTIVE

- To assess the efficacy and safety of ripretinib versus sunitinib as second-line treatment in Chinese GIST patients
- To bridge to the global INTRIGUE study

BACKGROUND

- Ripretinib: a switch-control tyrosine kinase inhibitor, an approved \geq 4th line GIST therapy
- In INTRIGUE phase 3 study¹, a randomized, phase 3 study in patients with advanced GIST previously treated with imatinib, compared to **sunitinib**, **ripretinib** showed:
- A comparable progression-free survival (PFS), demonstrating ripretinib's activity as second-line therapy for GIST
- A higher objective response rate (ORR) and a numerically longer PFS in the KIT exon 11-mutated patient population
- A more favorable safety profile and better responses on patient-reported outcome measures

METHODS

• This study was a randomized, active-controlled, open-label, multicenter, phase 2 study (NCT04633122)

Figure 1. Study design

- Secondary Endpoints: PFS based on investigator assessment, ORR by IRR, overall survival (OS) and safety
- Efficacy analyses were performed in:
- All-patients intention-to-treat (AP ITT) population: all randomized patients
- *KIT* exon 11 mutation intention-to-treat (Ex11 ITT) population: all patients with *KIT* exon 11 mutations at randomization
- No statistical testing was pre-specified; Nominal *p*-values were presented for descriptive purpose

RESULTS (data cut-off: 20 July 2022)

Baseline characteristics

• Between 6 December 2020 and 15 September 2021, 108 patients were randomized:

Ripretinib: AP ITT n= 54; Ex11 ITT n=35

Sunitinib: AP ITT n= 54; Ex11 ITT n=35

• Demographic and baseline characteristics were generally well balanced between arms (Table 1)

Efficacy

- Key efficacy endpoints are presented in **Table 2**
- Subgroup analyses of PFS by IRR based on mutation type revealed a favorable trend with ripretinib over **sunitinib** in patients with primary *KIT* exon 11 mutations (**Figure 3**)

Table 1: I

Patient c

Age at sig Sex, male, ECOG perf Tumor mu *KIT* e *KIT* e Othe Sum of the by IRR^b, m Duration o max), mon

Table 2: Summary of efficacy endpoints

mPFS by HR (

mPFS by

HR ORR by I

Safety

Ripretinib

Presented at the 2023 American Society of Clinical Oncology (ASCO) Gastrointestinal Cancers Symposium, 19–21 January 2023

Authors: Jian Li¹, Jun Zhang², Yanqiao Zhang³, Haibo Qiu⁴, Yanbing Zhou⁵, Yongjian Zhou⁵, Yongjian Zhou⁶, Xinhua Zhang¹⁷, Yingjiang Wang¹⁵, Bo Zhang¹⁶, Jiayu Ling¹⁷, Yingjiang Ye¹⁸, Zhao Huang¹⁹, Juan Dong¹⁹, Lin Shen^{1*}

Patient demographics and baseline characteristics (AP ITT population)										
haracteristics	Ripretinib (n = 54)	Sunitinib (n = 54)	Total (N = 108)							
ning of ICF, median (min, max), years	59.0 (25, 82)	58.5 (28, 81)	59.0 (25, 82)							
n (%)	36 (67)	33 (61)	69 (64)							
ormance status ≥1, n (%)	31 (57)	31 (57)	62 (57)							
tation, n (%)										
exon 9	10 (19)	10 (19)	20 (19)							
exon 11	35 (65)	35 (65)	70 (65)							
rS ^a	9 (17)	9 (17)	18 (17)							
e longest diameters of target lesions	102.8	94.4	95.1							
edian (min, max), mm	(17.7, 292.9)	(12.8, 464.1)	(12.8, 464.1)							
f imatinib treatment, median (min,	41.3	37.5	37.6							
iths	(3.5, 164.1)	(1.4, 134.9)	(1.4, 164.1)							

^aKIT/PDGFRA wild-type, PDGFRA mutations, or KIT mutations other than those in exons 9 and 11; ^bThe data are only available for 52 patients for each of the arm, as two patients from each of the arm did not undergo baseline tumor evaluation; ECOG: Eastern Cooperative Oncology Group; ICF: informed consent form; IRR: independent radiological review

	AP ITT po	opulation	Ex11 ITT population			
Efficacy endpoints	Ripretinib (n = 54)	Sunitinib (n = 54)	Ripretinib (n = 35)	Sunitinib (n = 35)		
IRR (Figure 2), months	10.3	8.3	Not reached	4.9		
95% CI)	0.99 (0.5	57, 1.69)	0.46 (0.23, 0.92)			
investigator, months	8.6	8.3	13.8	7.0		
95% CI)	0.97 (0.5	57, 1.64)	0.55 (0.29, 1.07)			
RR, n (%)	16 (29.6)	11 (20.4)	13 (37.1)	8 (22.9)		

AP ITT: all-patients intention-to-treat; Ex11 ITT: KIT exon 11 mutation intention-to-treat; HR: hazard ratio; IRR: independent radiological review; mPFS: median progression-free survival; ORR: objective response rate

• Fewer grade 3/4 TEAEs and TEAEs leading to dose modification were reported with ripretinib (**Table 3**) Fewer grade 3/4 treatment-related TEAEs (TRAEs) were reported with ripretinib (17%) than with sunitinib (56%)

• In ripretinib arm, grade 3/4 TRAEs reported in $\geq 2\%$ of patients were anaemia (4%) and diarrhoea (4%). Those in sunitinib arm were neutrophil count decreased (26%), platelet count decreased (19%), hypertension (13%), white blood cell count decreased (11%), anaemia (9%), palmar-plantar erythrodysaesthesia syndrome (4%), and lymphocyte count decreased (4%)

Number of Patien Sunitinib CI: confidence inte

	Ripretinib No. (events)	Sunitinib No. (events)	Ripretinib mPFS (Months)	Sunitinib mPFS (Months)	Hazard Ratio (95% Cl)	Favour Ripretinib	Favour Sunitinib
Overall	54 (28)	54 (28)	10.3	8.3	0.99 (0.57, 1.69)	H	н
Mutation Type							
<i>KIT</i> exon 11	35 (13)	35 (20)	NR	4.9	0.46 (0.23, 0.92)	⊢ ●-I	
<i>KIT</i> exon 9	10 (9)	10 (6)	4.1	8.3	2.76 (0.91, 8.32)		
Other	9 (6)	9 (2)	4.8	NR	4.32 (0.86, 21.61)	0.01 0.1 1.	0 10 100

TEAEs, n (%)	Ripretinib (n=54)	Sunitinib (n=54)
Any TEAEs	54 (100)	54 (100)
Grade 3/4 TEAEs	19 (35)	35 (65)
Treatment-emergent SAE	9 (17)	12 (22)
TEAEs leading to dose interruption	10 (19)	28 (52)
TEAEs leading to dose reduction	12 (22)	17 (32)
TEAEs leading to treatment discontinuation	5 (9)	8 (15)
TEAEs leading to death	0	2 (4)
SAE: serious adverse event		

CONCLUSIONS

BZ, JYL, YJY, ZH, JD, LS. valuable inputs.

Abstract No. 803

*Email Address: linshenpku@163.com

+ Censor

			I					I		I		I		I			
)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
at Risk (Number of Events) Time (months)																	
(0)	34 (0)	32 (2)	29 (2)	28 (1)	27 (1)	23 (2)	23 (0)	22 (0)	20 (2)	20 (0)	19 (1)	15 (0)	15 (0)	5 (2)	5 (0)	5 (0)	0 (0)
(0)	34 (0)	28 (6)	20 (7)	18 (1)	13 (3)	12 (1)	12 (0)	12 (0)	9 (1)	9 (0)	9 (0)	7 (0)	7 (0)	4 (0)	4 (0)	3 (1)	0 (0)
erva	val; NE: not evaluable; NR: not reached; PFS: progression-free survival																

Figure 3. Forest plot of PFS by IRR based on mutation type

Table 3: Summary of treatment-emergent adverse events (TEAEs)

Compared to sunitinib, ripretinib demonstrated comparable efficacy and a more favorable safety profile as second-line therapy in Chinese patients with advanced GIST • Ripretinib provided greater clinical benefit in those patients with *KIT* exon 11 mutations

References: 1. Bauer S et al. J Clin Oncol. 2022; 40(34):3918–3928.

Author Contributions: Substantial contributions to study conception/design, or acquisition/analysis/interpretation of data: JL, JZ, YQZ, HBQ, YBZ, YJZ, XHZ, YZ, YPZ, YL, MW, KTS, KXT, XW, HJW, BZ, JYL, YJY, ZH, JD, LS; Drafting of the publication, or revising it critically for important intellectual content: JL, JZ, YQZ, HBQ, YBZ, YJZ, XHZ, YZ, YPZ, YL, MW, KTS, KXT, XW, HJW, BZ, JYL, YJY, ZH, JD, LS; Final approval of the publication: JL, JZ, YQZ, HBQ, YBZ, YJZ, XHZ, YZ, YPZ, YL, MW, KTS, KXT, XW, HJW

Author Disclosures: ZH, JD: Employees of Zai Lab, hold the stock options of Zai Lab; the other authors: Nothing to declare. Acknowledgements: This study was sponsored by Zai Lab (Shanghai) Co., Ltd. The authors thank the patients and their families, the investigators and site study staff who took part in this study. Ning Li, BSc, (Costello Medical, Singapore; funded by Zai Lab) provided medical writing and editorial assistance on the basis of the authors' input and direction, in accordance with Good Publication Practice guidelines (http://www.ismpp.org/gpp3). The poster was developed in collaboration with Deciphera, which provided