DCC-3116, a First-in-Class Selective Inhibitor Of ULK1/2 Kinases and Autophagy, Combines with the KRAS^{G12C} Inhibitor Sotorasib Resulting in Tumor Regression in NSCLC Xenograft Models

Martin McMahon PhD, Cumming-Presidential Professor of Cancer Biology

Martin McMahon, Disclosures:

Research Support:

- Deciphera Pharmaceuticals
- Revolution Medicines
- Pfizer Inc.

Honoraria:

- Deciphera Pharmaceuticals
- Revolution Medicines
- Pfizer Inc.
- Autobahn Labs
- Aro Biotherapeutics

RAS oncoproteins as drivers of malignant transformation and as targets for pathway-targeted cancer therapy.

- Mutationally activated H-, K- or NRAS genes encode oncoproteins that drive the aberrant and lethal behavior of ~20% of all human cancers
- Once considered "undruggable", RAS oncoproteins are now at the center of a massive effort to develop direct pharmacological inhibitors of RAS.GDP or RAS.GTP, representing a major advance for cancer therapy.
- However, as with most/all single-agent, pathway-targeted cancer therapies, the durability of patient response is limited by the emergence of drug resistant disease generally due to on-target reactivation of the RAS-regulated RAF>MEK>ERK MAP kinase and/or the PI3'-kinase>AKT signaling pathways.
- Hence, the depth and durability of patient responses will likely be greatly improved by the development of novel combination therapies whether it be RAS inhibitors plus: 1. Conventional chemoRx; 2. Radiation therapy; 3. immunooncology or; 4. Pathway-targeted agents.

Inhibition of KRAS>RAF>MEK>ERK signaling with trametinib in RAS-driven cancers induces cytoprotective autophagy

 Inhibition of KRAS>RAF>MEK>ERK signaling in RAS-driven cancer cell lines leads to induced autophagy

Kinsey et al., (2019) *Nature Medicine* McMahon Lab Combined inhibition of KRAS>RAF> MEK>ERK signaling plus lysosome function (HCQ) promotes regression of established xenografts

 Patient 1 showed a striking antitumor response to the combination of trametinib plus HCQ (T₂HCQ₁₂₀₀)

Bryant et al., (2019) *Nature Medicine* Der Lab

Lee et al., (2019) *PNAS* Luo Lab

MEK1/2 inhibition leads to activation of the LKB1 AMPK ULK1 signaling axis

Molecular Cell Article

Molecular Cell (2009) 33(2):237-47

Oncogenic B-RAF Negatively Regulates the Tumor Suppressor LKB1 to Promote Melanoma Cell Proliferation

Bin Zheng,^{1,2,*} Joseph H. Jeong,⁴ John M. Asara,^{1,3} Yuan-Ying Yuan,¹ Scott R. Granter,⁵ Lynda Chin,⁴ and Lewis C. Cantley^{1,2,*} ¹Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA ²Department of Systems Biology ³Department of Pathology Harvard Medical School, Boston, MA 02115, USA ⁴Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA ⁵Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA

*Correspondence: bzheng@bidmc.harvard.edu (B.Z.), lewis_cantley@hms.harvard.edu (L.C.C.) DOI 10.1016/i.molcel.2008.12.026

ULK1/2 Inhibitor (DCC-3116) Inhibits Autophagy Pathways Activated by Tumor-Targeted Therapies

>70% of human cancers depend on RTK/RAS/MAPK signaling.

ULK1 and ULK2 kinases are initiating factors for activation of autophagy

DCC-3116 is the only selective and potent ULK kinase inhibitor in clinical development

Phase 1 dose escalation includes rational combination cohorts

- Inhibitors of tumor driver pathways activate ULK-dependent tumor survival pathways that mediate resistance through autophagy.
- ULK inhibition leads to striking pre-clinical anti-cancer activity in combination with tumor driver inhibitors within the RTK/RAS/MAPK pathway.
- DCC-3116 is a First-in-Class target opportunity in RTK, RAS, MAPK mutant cancers. DCC-3116 is currently under clinical investigation (NCT04892017).
- Deciphera is on track to initiate combination cohorts by the end of 2022.

DCC-3116 is a Potent & Selective, First-In-Class ULK1/2 Inhibitor Designed to Inhibit Autophagy

Summary

Highly Potent (IC₅₀ cellular NanoBRET)

- ULK1: 6nM
- ULK2: 9nM

High Kinome Selectivity

- No off-target kinases within 30-fold of ULK1
- Only 5 kinases within 100-fold of ULK1

Designed to avoid CNS exposure

 Low Ratio Brain_{ff}/Plasma_{ff} (4.3%) to avoid CNS autophagy

Phase 1 study initiated in June 2021

• NCT04892017

DCC-3116: A SELECTIVE ULK1/2 INHIBITOR

Source and Notes: Composite of enzyme and cellular kinase phosphorylation data was used. The size of the red circle corresponds to the IC₅₀ value obtained. No circles are plotted for kinases with IC₅₀ > 1 µM; Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com).

DCC-3116 inhibits ULK1/2 activity and autophagic flux in a KRAS^{G12C} mutated NSCLC cell line

DCC-3116 inhibits KRAS^{G12C} inhibitorinduced ULK → pATG13 signaling

DCC-3116 inhibits ULK1/2 activity and autophagic flux in a KRAS^{G12C} mutated NSCLC cell line

DCC-3116 inhibits KRAS^{G12C} inhibitorinduced ULK → pATG13 signaling

DCC-3116 inhibits KRAS^{G12C} inhibitorinduced autophagy flux

DCC-3116 produces deeper and longer regressions in combination with sotorasib in a KRAS^{G12C}-mutated NSCLC xenograft model

DCC-3116 Outperformed Lysosomal Inhibitor Chloroquine as a Combination Partner to Sotorasib in a KRAS^{G12C} NSCLC Model

Calu-1 is a NSCLC xenograft model with a heterozygous KRAS^{G12C} mutation

Calu-1 (KRAS^{G12C/+}) Xenograft

- DCC-3116 cooperates with sotorasib for superior control of Calu-1 KRAS^{G12C}-driven xenografts
- Combination sotorasib plus DCC-3116 elicits tumor regression

DCC-3116 Exhibits Combination Efficacy with Sotorasib and Adagrasib in a PDX Lung Cancer KRAS^{G12C} Model

LU11554 is a KRAS^{G12C}-driven NSCLC PDX model with KEAP1 and CDKN2A mutations

Summary & Conclusions

- Inhibitors targeting mutant RTK>RAS>BRAF cancers activate ULK1/2mediated autophagy as an adaptive treatment resistance mechanism
- Sotorasib and adagrasib activate ULK1/2-mediated autophagy that is inhibited by DCC-3116 *in vitro*. Combination therapy with DCC-3116 translates to deeper and longer tumor regressions *in vivo*
- These data demonstrate a compelling rationale to evaluate DCC-3116 in combination with KRAS^{G12C} inhibitors in NSCLC patients
- DCC-3116 is currently in a Phase 1 clinical trial in patients with advanced solid tumors with documented KRAS, NRAS or BRAF mutations (NCT04892017).

Cooperation between DCC-3116, a First-in-Class, Selective Inhibitor Of ULK1/2 Kinases, & KRAS^{G12C} Inhibition in Preclinical Models of NSCLC

Deciphera Pharmaceuticals, LLC

- Madhumita Bogdan
 - Mary J. Timson
- Hikmat Al-Hashimi
 - Yu Zhan
 - Bryan D. Smith
 - Daniel L. Flynn

Huntsman Cancer Institute

- Phaedra Ghazi
 - Dilru Silva
- Conan G. Kinsey

