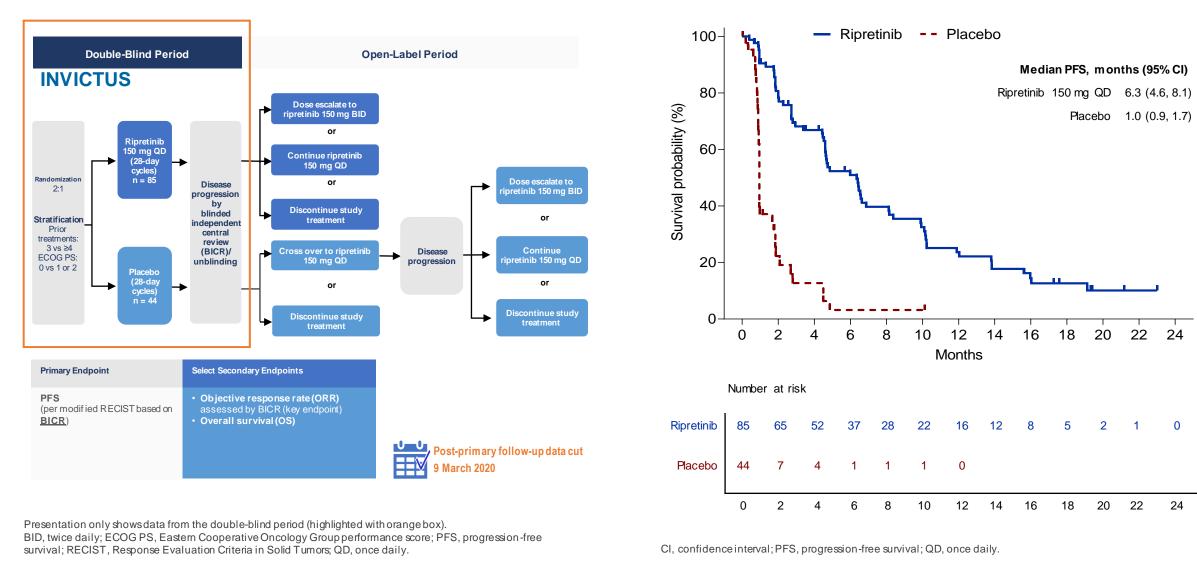

Ripretinib demonstrated activity across all KIT/PDGFRA mutations in patients with fourth-line advanced gastrointestinal stromal tumor: Analysis from the phase 3 INVICTUS study

¹University Hospitals Leuven, Leuven, Leuven, Leuven, Leuven, Belgium; ²West German Cancer Center, University Medical Center, Leiden, Netherlands; ⁷Vall d'Hebron Institute of Cancer Center, Leiden, Netherlands; ⁷Vall d'Hebron Institute of Cancer Center, Leiden, Netherlands; ⁷Vall d'Hebron Institute of Cancer Center, Leiden, Netherlands; ¹⁰Sylvester Comprehensive Cancer Center, University of Miami, FL, USA; ¹⁰Sylvester Comprehensive Cancer Center, Leiden, Netherlands; ⁷Vall d'Hebron Institute of Cancer Center, Leiden, Netherlands; ¹⁰Sylvester Comprehensive Cancer Center, University of Miami, FL, USA; ¹⁰Sylvester Comprehensive Cancer Center, University of Miami, FL, USA; ¹⁰Sylvester Comprehensive Cancer Center, New York, NY, USA; ¹²Sarcoma Center, Helios Klinikum Berlin-Buch, Berlin, Germany; ¹³Deciphera Pharmaceuticals, LLC, Waltham, MA, USA; ¹⁴Fox Chase Cancer Center, Philadelphia, PA, USA; ¹⁵Centre Leon Berard, Lyon, France

INTRODUCTION

- Ripretinib is a switch-control tyrosine kinase inhibitor designed to broadly inhibit mutant KIT/PDGFRA kinases (**Figure 1**)
- In May 2020, the US FDA approved ripretinib for the treatment of adult patients with advanced gastrointestinal stromal tumor (GIST) who received prior treatment with 3 or more kinase inhibitors, including imatinib¹
- In the INVICTUS study, ripretinib significantly improved progression-free survival (PFS) compared with placebo (median PFS 6.3 vs 1.0 months, hazard ratio [HR] 0.15, P < 0.0001) reducing the risk of disease progression or death by 85% and showing a clinically meaningful improvement in overall survival (OS, median OS 15.1 vs 6.6 months, HR 0.36)¹
- KIT/PDGFRA mutations are early oncogenic events in patients with GIST and remain oncogenic drivers in the metastatic setting²⁻⁴ (**Figure 1**)
- Clonal evolution of additional mutations represent the major mechanism of resistance to KIT tyrosine kinase inhibitors, and previously approved drugs inhibit only a limited number of mutations on the spectrum of resistance⁵
- Here, we report the results of an exploratory analysis from INVICTUS assessing the efficacy of ripretinib across KIT/PDGFRA mutation subgroups

Figure 1. KIT/PDGFRA structure and ripretinib mechanism of action

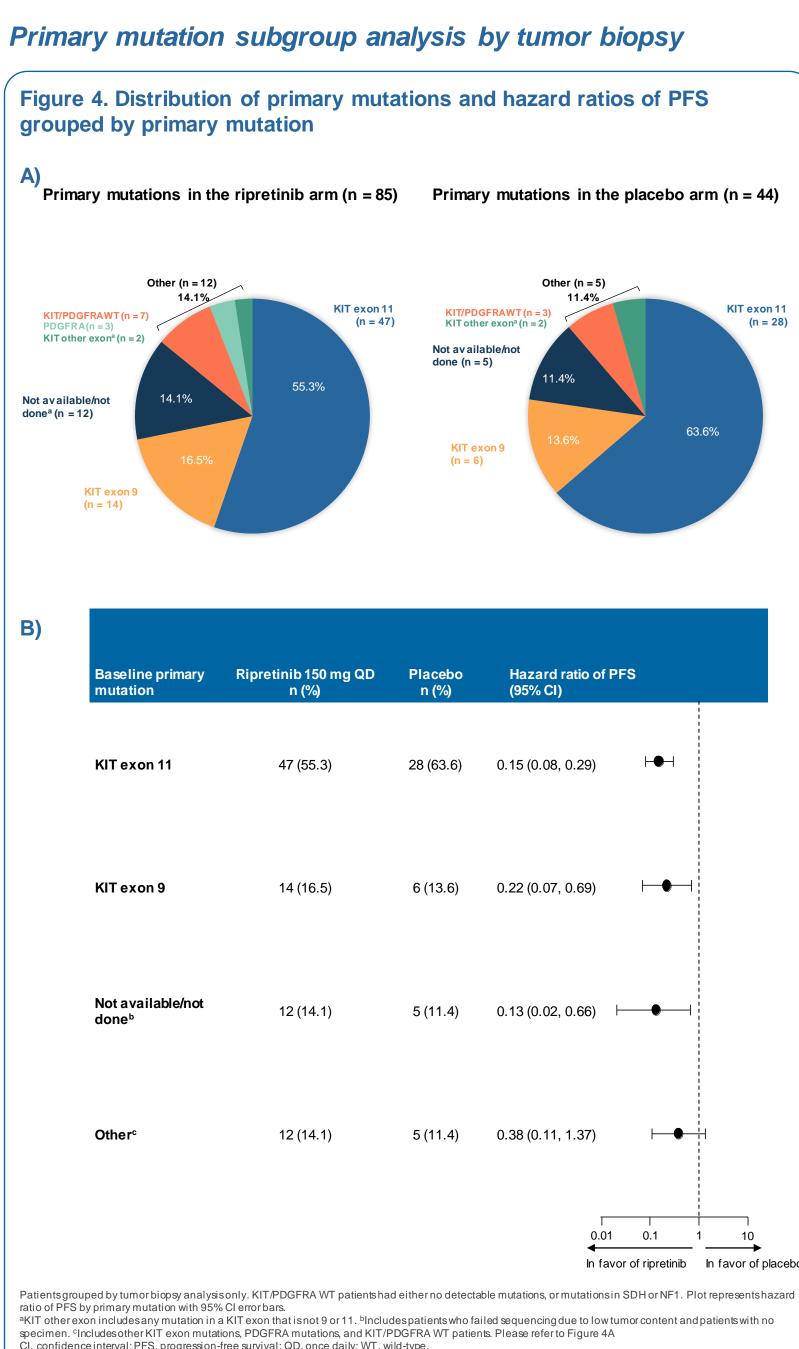


METHODS

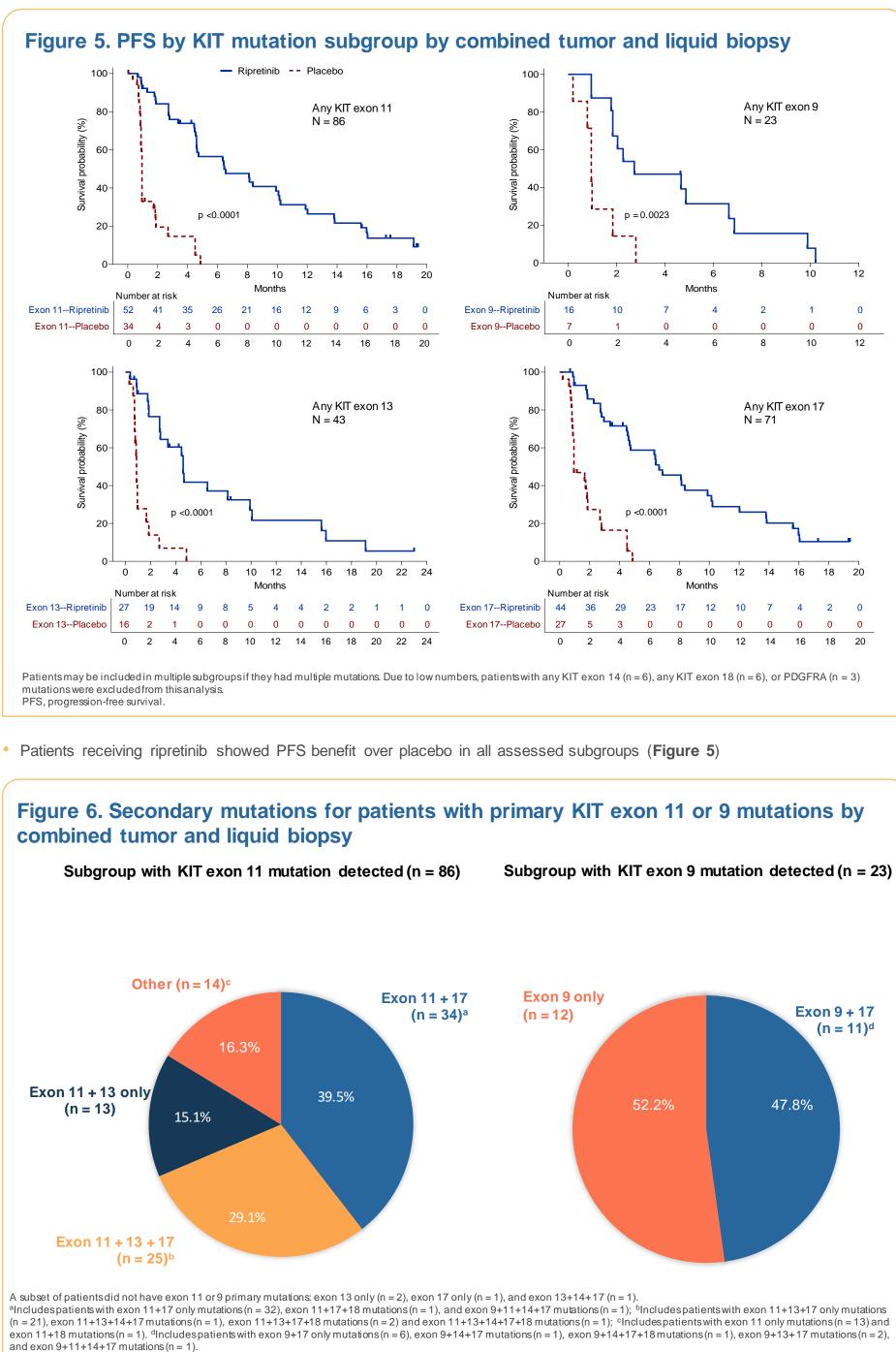
- INVICTUS (NCT03353753) is a phase 3, randomized, double-blind, placebo-controlled trial in which patients with advanced GIST who were previously treated with at least imatinib, sunitinib, and regoratenib were randomized (2:1) to ripretinib 150 mg once daily or placebo (Figure 2)
- Tumor biopsies were collected after patients received their last anticancer therapy prior to entry into the phase 3 INVICTUS study
- Tumor biopsies were sequenced using a next-generation sequencing panel (324 genes) from FoundationOne
- Plasma circulating tumor DNA (ctDNA) was collected predose on Cycle 1 Day 1, and was profiled using a next-generation sequencing liquid biopsy assay (73) genes) from Guardant360
- Primary mutation subgroups and KIT/PDGFRA wild-type (WT) status were determined via tumor biopsy
- Secondary mutation subgroups were determined by combining results from tumor and liquid biopsies
- Correlations between KIT/PDGFRA mutational status and clinical outcomes from the INVICTUS study were assessed
- This retrospective analysis was not part of the study protocol
- The data cutoff for this analysis was March 9, 2020

Figure 2. INVICTUS study design

Figure 3. INVICTUS PFS results



Presented at the 2020 CTOS Virtual Meeting November 18–21, 2020



Patrick Schöffski¹, Sebastian Bauer², Michael Heinrich³, Suzanne George⁴, John Zalcberg⁵, Hans Gelderblom⁶, Cesar Serrano Garcia⁷, Robin L Jones⁸, Steven Attia⁹, Gina D'Amato¹⁰, Ping Chi¹¹, Peter Reichardt¹², Julie Meade¹³, Kelvin Shi¹³, Ying Su¹³, Rodrigo Ruiz-Soto¹³, Margaret von Mehren¹⁴, Jean-Yves Blay¹⁵

RESULTS

KIT mutation analysis by combined tumor and liquid biopsy

- conventional tumor-based mutational analysis
- were detected in up to 4 exons within a single patient

Acknowledaments

We would like to thank the patients, their families and caregivers, the investigators, and the investigational site staff of the INVICTUS study. The INVICTUS study was sponsored by Deciphera Pharmaceuticals, LLC, Waltham, MA, USA. Writing and editorial support was provided by Lauren Hanlon, PhD, of AlphaBioCom, LLC, King of Prussia, PA, USA, and was funded by Deciphera Pharmaceuticals, LLC

Disclaimer

Copies of this ePoster obtained through QR, AR, and/or text key codes are for personal use only and may not be reproduced without written permission of the authors

- CI, confidence interval; PFS, progression-free survival; QD, once daily; WT, wild-type.
- Patients in the INVICTUS study were not randomized by stratification of primary mutation status Independent of mutational status, in INVICTUS, ripretinib demonstrated a significant improvement in PFS compared with placebo (Figure 3)
- More than half of the patients in each treatment arm had primary KIT exon 11 mutations (Figure 4A)
- Ripretinib showed PFS benefit in all primary mutation subgroups compared with placebo (Figure 4B)
- KIT/PDGFRA WT status was similar among the randomization arms (2:1 randomization; 7 ripretinib, 3 placebo) • The median PFS for KIT/PDGFRA WT patients receiving ripretinib was 5.7 months, while the median PFS for KIT/PDGFRA WT patients receiving placebo was 2.1 months

Patients were grouped into 4 subsets: any KIT exon 9, any KIT exon 11, any KIT exon 13, and any KIT exon 17 Patients were included in multiple groups if they had mutations in two or more exons

- For example, a patient that has a primary mutation in exon 11 and a secondary mutation in exon 17 would fall into both the any KIT exon 11 group and the any KIT exon 17 group

• Patients from this study had tumors with complex and heterogenous mutational landscapes (Figure 6) By combining tumor and liquid biopsies, a wider array of secondary resistance mutations was detected as compared with

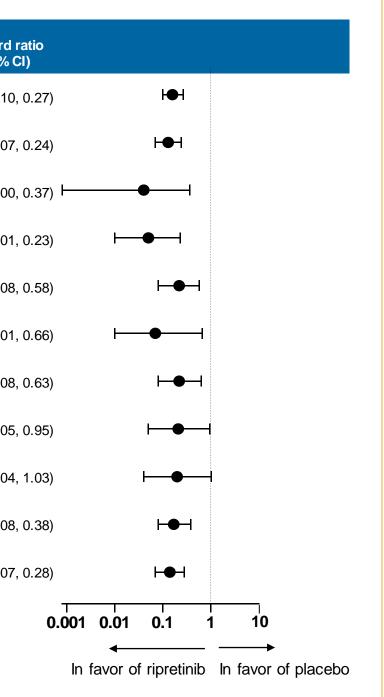
Combined tumor and liquid biopsies allowed for detection of resistance mutations in 73% of patients; resistance mutations

Figure 7. Hazard ratio of PFS with different mutation groups by combined tumor and liquid biopsy

Mutation subgroup	Ripretinib 150 mg QD (N)	Placebo (N)	Hazard (95%
All patients	85	44	0.16 (0.10
Any KIT exon 11ª	52	34	0.13 (0.07
Exon 11 + 13 only	8	5	0.04 (0.00
Exon 11 + 17	20	14	0.05 (0.01
Exon 11 + 13 + 17	16	9	0.22 (0.08
Other ^b	8	6	0.07 (0.01
Any KIT exon 9ª	16	7	0.22 (0.08
Exon 9 + 17	7	4	0.21 (0.05
Exon 9 only	9	3	0.20 (0.04
Any KIT exon 13	27	16	0.17 (0.08
Any KIT exon 17	44	27	0.14 (0.07

Patients may be included in multiple subgroups if they had multiple mutations. Due to low numbers, patients with any KIT exon 14 (n = 6), any KIT exon 18 (n = 6), or PDGFRA (n = 3) mutations were excluded from this analysis. Please refer to Figure 6 for each subgroup. ^aOne patient had both KIT exon 11 and KIT exon 9 mutations detected in liquid biopsy. ^bIncludes exon 11 only mutations (n = 13) and exon 11+18 mutations (n = 1). °Positive for KIT exon 9 mutation and negative for KIT exon 17 mutation. CI, confidence interval; PFS, progression-free survival; QD, once daily.

• The HRs of PFS within different mutation subgroups all favored treatment with ripretinib, which is in line with the primary outcome of this clinical trial (Figure 7)


CONCLUSIONS

- In this exploratory analysis, ripretinib demonstrated clinically meaningful activity in patients with ≥fourth-line advanced GIST with multiple, heterogeneous genetic subsets of **KIT/PDGFRA** mutations
- Ripretinib showed PFS benefit vs placebo in all primary mutation subgroups
- By combining tumor and liquid biopsy (ctDNA), a wide array of secondary mutations were detected, and ripretinib showed PFS benefit in all mutation subgroups
- Overall, these results demonstrate that ripretinib can inhibit a broad spectrum of KIT/PDGFRA mutations in patients with advanced GIST who have received prior treatment with ≥3 kinase inhibitors, including imatinib
- These results support the proposed broad mechanism of action of ripretinib with its specific receptor binding properties

References

1) Blay J-Y, et al. Lancet Oncol. 2020;21:923–34; 2) Nishida T, et al, Gastric Cancer. 2016;19:3–14; 3) Serrano C., et al. Ther Adv Med Onc. 2014;6:115– 27; 4) NCCN Guidelines. Soft Tissue Sarcoma. Version 2.2020; 5) Hemming ML, et al. Ann Oncol. 2018;29:2037–45; 6) Ding H, et al. Oncol Rep. 2020;43:751-64; 7) Corless CL, et al. Nat Rev Cancer. 2011;11:865-78.

