Characterization of the extensive heterogeneity of KIT/PDGFRA mutations in patients with fourthline advanced gastrointestinal stromal tumor: Genomic analysis of the phase 3 INVICTUS study

<u>Sebastian Bauer</u>¹, Patrick Schöffski², Michael Heinrich³, Suzanne George⁴, John Zalcberg⁵, Hans Gelderblom⁶, Cesar Serrano Garcia⁷, Robin L. Jones⁸, Steven Attia⁹, Gina D'Amato¹⁰, Ping Chi¹¹, Peter Reichardt¹², Julie Meade¹³, Vienna L. Reichert¹³, Ying Su¹³, Rodrigo Ruiz-Soto¹³, Jean-Yves Blay¹⁴, Margaret von Mehren¹⁵

¹Sarcoma Center, West German Cancer Center, Essen, Germany; ²General Medical Oncology, University Hospitals Leuven, Leuven, Belgium; ³Hematology/Medical Oncology, OHSU Knight Cancer Institute, Portland, OR, United States; ⁴Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; ⁵School of Public Health, Faculty of Medicine, Monash University, Melbourne, VIC, Australia; ⁶Medical Oncology, Leiden University Medical Center, Leiden, Netherlands; ⁷Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain; ⁸Sarcoma Unit, Royal Marsden and Institute of Cancer Research, London, United Kingdom; ⁹Oncology, Mayo Clinic, Jacksonville, FL, United States; ¹⁰Medical Oncology, Sylvester Comprehensive Cancer Center/University of Miami, Miami, FL, United States; ¹¹Human Oncology and Pathogenesis Program & Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; ¹²Oncology and Palliative Care, Sarcoma Center, Helios Klinikum Berlin-Buch, Berlin, Germany; ¹³Deciphera Pharmaceuticals, LLC, Waltham, MA, United States; ¹⁴Medecine, Centre Leon Berard, Lyon, France; ¹⁵Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.

Disclosure information

Dr. Sebastian Bauer

- Received honoraria from Bayer, Eli Lilly, Novartis, Pfizer, and PharmaMar
- Serves in an advisory/consultancy role for ADC Therapeutics, Bayer, Blueprint Medicines, Daiichi Sankyo, Deciphera, Eli Lilly, Exelixis, Janssen-Cilag, Nanobiotix, Novartis, PharmaMar, Plexxikon, and Roche
- Receives research funding from Novartis
- Serves as a member of the External Advisory Board of the Federal Ministry of Health for "Off-label use in oncology"

Introduction

- KIT mutations in exon 11 and exon 9 are early oncogenic events in gastrointestinal stromal tumors (GIST), and clonal evolution of additional mutations within the kinase domains (exons 13, 14, 17, and 18; Figure) represent the major mechanism of resistance to KIT tyrosine kinase inhibitors (TKI)¹⁻⁴
- In May 2020, the FDA approved ripretinib for the treatment of adult patients with advanced GIST who have received prior treatment with ≥3 kinase inhibitors, including imatinib
- Ripretinib is a switch-control TKI designed to inhibit mutant KIT and PDGFRA kinases⁵
- Baseline tumor and plasma samples were collected to investigate the genomic heterogeneity of resistance in the welldefined patient cohort (≥fourth-line) of the INVICTUS trial⁵

Introduction/Methods

	Tissue biopsy	Liquid biopsy
Accessibility of testing material	 Archival tumor tissue is not always available and can be time consuming to retrieve Invasive procedure is required to obtain biopsy Biopsy with low tumor content cannot be used for genotyping 	Noninvasive, minimal burden for patients
Data quality	High sensitivity and specificity	 High sensitivity, but false negative rate is high due to low shedding from the tumor Can be challenging to use to identify emerging resistance mutations due to generally very low mutant allele frequency (<1%)

- Tumor tissue specimens were collected after the last anti-cancer therapy and were analyzed using a next-generation sequencing (NGS) 324-gene assay, FoundationOne
- Plasma samples were collected at baseline and analyzed via an NGS 73-gene liquid biopsy assay, Guardant360

Primary mutation subgroups by baseline tumor biopsy

129 patients were enrolled in the INVICTUS study

^aIncludes patients that failed sequencing due to low tumor content and a patient with no specimen.

^bIncludes 1 patient with a KIT exon 13 only mutation, 2 patients with KIT exon 17 only mutations, and 1 patient with KIT exon 13+17 mutations.

WT, wild type.

Secondary KIT mutations detected in tumor biopsy

KIT mutations detected outside of exons 9/11 in tumor biopsy

- Mutations were more diverse in exons 17/18 (activation loop) compared with exons 13/14 (ATP binding pocket)
- **Fifteen** different mutations were found in exons 17/18
- **Five** different mutations were found in exons 13/14

Primary mutation subgroups by baseline liquid biopsy

129 patients were enrolled in the INVICTUS study

^a KIT exon 9 and 11 mutations were both detected in 1 patient and were counted in both groups.
 ^bIncludes patients that failed sequencing due to low tumor content and patients with no specimen.
 ^cIncludes 3 patients with exon 13 only mutations, 1 patient with an exon 17 only mutation, 1 patient with exon 13+17 mutations, and 1 patient with exon 13+14+17 mutations.

Secondary KIT mutations detected in liquid biopsy

KIT mutations detected outside of exons 9/11 in liquid biopsy

More mutations were detected via liquid biopsy compared with n = 25 tumor biopsy **Twenty-six** different mutations were found in exons 17/18 Twelve different mutations were n = 5 found in exons n = 4

Open circle indicates the protein change that occurred; closed circle indicates an in-frame deletion.

Exon

There were 3 patients with exon 13 only mutations, 1 patient with an exon 17 only mutation, 1 patient an exon 13+17 mutation,

and 1 patient with an exon 13+14+17 mutation.

13/14

Spectrum of KIT/PDGFRA mutations detected in tumor and liquid biopsy

- Heat map is generated by KIT exons/PDGFRA rather than by specific mutations in each exon
- Three patients were identified as having PDGFRA non-D824V exon 18 mutations

Conclusions

- This is the first and largest baseline genomic analysis by tumor and liquid biopsy in fourth-line patients with GIST that failed prior treatment with at least imatinib, sunitinib, and regorafenib
- The combination of tumor and liquid biopsies increased the detection rate of secondary mutations
- In patients with ≥fourth-line GIST from the INVICTUS study, we observed a complex and heterogeneous mutational landscape
- The heterogeneity of these mutations highlight the need for therapies that are effective against a broad spectrum of mutations

Acknowledgments

- We would like to thank the patients, their families and caregivers, the investigators, and the investigational site staff of the INVICTUS study
- The INVICTUS study was sponsored by Deciphera Pharmaceuticals, LLC, Waltham, MA, USA
- Writing and editorial support was provided by Lauren Hanlon, PhD, of AlphaBioCom, LLC, King of Prussia, PA, USA, and was funded by Deciphera Pharmaceuticals, LLC